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1.0 Introduction

The goal of the Knowledge Representation into Ada Parallel Processing project (KRAPP)
is to host and execute an intelligent system on multiple processors of the Fault Tolerant
Parallel Processor (FTPP) [Har87]. The methodology that permits the parallelized
execution of an intelligent system was developed by Worcester Polytechnic Institute (WPI).
It is based on the use of an intelligent scheduling mechanism called an Activation
Framework (AF) ([Gre87], [Gre89]). Additionally, it utilizes a suite of Activation
Framework Objects (AFOs) to model the intelligence of the desired application. The
candidate architecture used in the KRAPP project was the FTPP. It was developed by
Charles Stark Draper Laboratory (CSDL) and is capable of providing high throughput
while offering extremely high reliability. The intention of the KRAPP project was to use
the FTPP to demonstrate that the AF parallelization methodology is feasible, to quantify the
gains attainable by parallelizing a candidate application, and to evaluate the performance of
the AF and AFOs. ' h

The introductory Sections 1.1 through 1.4 discuss the Activation Framework
methodology, the two candidate applications, and the Fault Tolerant Parallel Processor
respectively. Section 2 discusses the utilities that were developed and the modifications
performed to permit the execution of the AF and the Event Diagnosis Expert on the FTPP.
Each utility is outlined and described separately. Section 3 gives an overall view of the
CSDL AF-FTPP development system, discussing how each utility outlined in Section 2 fits
in and contributes to the system. Section 4 presents the performance metrics attained
during the KRAPP analysis, while Section 5 suggests areas for performance
improvements. Finally, Section 6 concludes the document with :i'summary of the primary
results and an outline of suggested future work.



1.1 The Activation Framework

As previously mentioned, the Activation Framework methodology was developed by
Worcester Polytechnic Institute. The method uses a set of Activation Framework Objects
to represent the intelligence of the designated application. Because the AF was developed
by WPI and is not CSDL's expertise, only a brief overview of the methodology is
presented in this document.

The AF is responsible for the initializing and scheduling the AFOs. During the initialization
process, the AF creates a list element for each AFO in the application. This AFO structure
is allocated by the AF to record the attributes associated with the AFO, such as its name and
importance (priority). The AF inidalization process also allocates a list element for each
AFO input port. Similarly, this list element is used to store the port's attributes. Further, it
records the presence of pending messages and their respective locations. To maintain these
lists and the other linked lists inherent in the AF methodolbgy, WPI developed a List
Management System (LMS). This LMS provides the low-level functions necessary to
create a list header, to allocate or find a list element, and to read or write a data object.

When the AF determines the next AFO to schedule, it considers two criteria: the AFOS’
importance and the AFOs' priming conditions. The importance of an AFO is essentially its
priority. It is based on the number of pending input messages, is calculated using an
application specific (or possibly AFO specific) importance function, and is dynamic. An
AFO's priming conditons are the prerequisites that must be met before the AFO can be
scheduled, or fired. These conditions are application dependent, and typically they vary
from AFO to AFO. The fulfillment of an AFO's priming preréquisites depends on the
presence of messages at specific input ports. If any of an AFO's priming conditions has
been attained, then it is considered primed. Once primed, an AFO will be scheduled if it
has the highest importance of the primed AFOs. In other words, the AF determines which
AFOs are primed and, of this subset, executes the one with the highest importance.

A scheduled AFO executes until it is either preempted or finished. An AFO is preempted if
a‘primed AFO exists that has a higher importance. For example, preemption situations can
arise when messages are communicated between AFOs. If the executing AFO sends a
message, then the associated destination AFO may become primed or its importance may
increase. If the message causes the destination AFO to be primed and this AFO's



importance is greater than the executing AFO, then the AFO currer{ﬂy executing is -
suspended and the other AFO is scheduled.

Preemption situations can also occur when an AFO removes a message from an input port.
When a message is retrieved from a port, then importance of the corresponding AFO
typically changes. If the message removal causes the executing AFO's importance to
decrease and another primed AFO exists that has a higher importance, then the executing
AFO is preempted and the other scheduled.

In addition to initializing and scheduling the AFOs, the AF supports the inter-AFO
communication. The AF also allows the AFOs to detect the presence of pending messages
and to retrieve them from their input ports.

As discussed earlier, the AFOs and their associated attributes (priming conditions, global
importance, interconnections, etc.) characterize the inteﬁigcnce of the application.
Representing an intelligent system as a parallel process, however, is a difficult task. An
attractive feature of the AF methodology is that these AFOs are automatically generated.
Specifically, the AFOs are created by a Rules to AFO Translator. This Translator parses
and interpréts a set of rules (Horn clauses) which model the application and generates a
corresponding suite of AFOs. After their creation, the AFOs can be integrated with the AF
and executed. Further, unlike the AFOs which vary from application to application, the AF
usually does not have to be changed.

The execution of the AF methodology on a parallel processor is illustrated in Figure 1.
Each processor hosts an image of the AF and is responsible for executing a subset of the
application’s AFOs. The intra-processor message communication is supported by the AF.
Alternatively, the inter-processor data transfer is completed by the AF and an operating
system message passing mechanism.
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The implementation of the AF methodology on the FTPP is shown in Figure 2. An FTPP ::
load module is created, and it is downloaded to and executed on each Virtual Group
(designated by a Virtual Group Identifier or VID). This load module contains the AF, the
suite of AFOs, the FTPP Operating System, and the AF-FTPP Interface. The AF-FTPP
Interface, which was developed by Charles Stark Draper Laboratory under the KRAPP
project, permits the integration of the AF and AFOs with the FTPP Operating System. In
addition, it allows the scheduling of the AFOs as well as redundancy management tasks,
inter-VID message communication, the observation of message traffic, and the
measurement of the performance of the AF.

Although all VIDs host the entire AFO suite, each VID is only responsible for executing a
subset of them. Further, like the intra-processor communication previously discussed, the
intra-VID message transfer is completed by the AF. The inter-VID data communication is
supported by the AF, AF-FTPP Interface, FTPP Operating System, and FTPP Network
Element (NE). The AF-FTPP Interface, FTPP Operating Sys-fem, and the NE emulate the
operating system message passing mechanism.

1.2 The Candidate Application

Advanced military aircraft will host a wide variety of sophisticated avionics subsystems for
Terrain Following/Terrain Avoidance, threat avoidance, all-weather and night operations,
mission planning and optimization, and weapons delivery. The real-time management of
and assimilation of data from these complex functions is expected to seriously overburden
an already cognitively stressed aircrew. Consequently, a computational system is needed
which will integrate and assess the vast quantity of information emanating from a multisen-
sor navigation suite to produce a meaningful yet compressed set of navigation status and
data for presentation to the aircrew.

It is anticipated that these functions will be computationally intensive and in some cases
mission-critical. Therefore it is of interest to demonstrate the feasibility of transitioning
knowledge-based representations of these intelligent navigational systems to a highly reli-
able, high-througiput processing system. A successful demonstration of this w Juld result
in a technology which can be used to facilitate the development of robust, high-throughput
artificial intelligence systems which will be required for programs such as the Pilot's
Associate or Space Station Freedom applications. It is the objective of the KRAPP pro-
gram to develop and demonstrate this technology.



The application selected for the KRAPP program is the Adaptive Tactical Navigator (ATN)
([Berl], [Ber2], [Gre87]). The purpose of the ATN is to supplant many of the functions
of the navigator in the next generation of Air Force attack aircraft. The ATN combines
artificial intelligence techniques, knowledge-based systems, and advanced navigation algo-
rithms. With the successful completion of the KRAPP program, it will also have available
automated translation of high-level navigation system knowledge, expressed as Horn
clause rules, to parallelized Ada code which exhibits computational speedup on a high-
throughput high-reliability parallel processor.

The ATN is succinctly described in [Ber2]:

"The Adaptive Tactical Navigator (ATN) [Ach87] is a:i.intelligent onboard
system which utilizes expert navigation sensors and their integration algo-
rithms to provide equipment management and pilot decision-aiding for the
multisensor navigation suite of future tactical aircraft. A navigation S)‘rstem
has been defined which is representative of the technology which is being
developed for operational aircraft in the mid-1990s. This navigation sys-
tem, which the ATN was designed to manage, includes the following: a
strapdown inertial navigation system (INS), Global Positioning System
(GPS), Synthetic Aperture Radar (SAR), Doppler Radar, an Electro-Optical
system (EO), Sandia Inertial Terrain-Aided Navigation System (SITAN),
and a digital moving map dispiay."[Ber2]

The ATN is functionally organized into six expert systems (see Figure 3). The first three
manage the equipment suite and the second three perform decision-aiding functions. The
descriptions of these functions given below are paraphrased from [Ber1].

E . I! N 'E' .7 .

The Navigation Source Manager experts use engineering design models to monitor
equipment performance and to detect and isolate equipment failures or degradations.

The System Status expert diagnoses system health based on reliability data, recent
maintenance patterns, current mission environment, and lower-level diagnoses.
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Figure 3 - The Adaptive Tactical Navigator

The Moding expert configures viable component combinations based on current
equipment status and determines appropriate handoff strategies for mode changes.

The Event Diagnosis expert evaluates planned navigation events, such as waypoint
encounters and destinations, and diagnoses anomalous or out-of-spec events to
support pilot moding decisions. '

The Mission Management expert stores mission plan and environment data and
determines which available equipment configurations are appropriate for the current
and forecast mission situation.

The Pilot-Vehicle Interface Management expert manages communication between
the ATN and the pilot in a manner appropriate for the current mission phase.

The KRAPP program uses a portion of the Event Diagnosis expert of the ATN as its
demonstration application.



Figure 4 - The Event Diagnosis Expert -

The subset of Event Diagnosis Expert employed by KRAPP was characterized using eight
Homn clauses, or rules. An AFO was used to represent each rule, and five AFOs were used
for the input and output facilities. Accordingly, the AF version of the Expert involves
thirteen AFOs. This AFO suite and its associated inter-connectivity are illustrated in Figure
4.

1.3 Another -Candidate Application

Although the Event Diagnosis Expert is a suitable rule set to exercise the dynamics of the
Activation Framework and its interaction with the FTPP operating system, there were a
number of motivating factors toward the selection of a more complex application:

1. The originai translators (Rules to EFG and EFG to AFOs) were riddled with
-specific references to the Event Diagnosis Expert parameters essentially
making the translators specific to this particular application. Consequently,
rather than tailoring the translators for each subsequent application, it was



highly desirable to generalize these translators to permit relatively painless "
implementation of other applications. Furthermore, the generalized translators
should handle all input/output connectivity relations. The application of
generalized translators to another serious test case ensures not only that
complex data dependencies are correctly implemented but also that all old
vestiges of the Event Diagnosis Expert are removed.

2. The Event Diagnosis Expert application consisting of only 13 AFOs generated
a suite of a mere 13 tasks. In terms of computational load and memory
allocation this scenario underutilizes the FTPP capabilities which has 135
available processors for assignment of tasks. A significantly larger task suite
would approach the limits of the FTPP's operational activity.

3. In order to develop a sophisticated load balancing algorithm a sufficiently
complex data/task dependency graph is necessary to visualize the parameters
which should be optimized.

A Real Time Controller was selected as this candidate application to which the AF
methodology was applied. Figure 5 depicts the data dependency relations for the Real
Time Controller. This task suite consists of 56 tasks, seven of which are input nodes;
these tasks with the necessary output task generate a 57 AFO suite.
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1.4 The Fault Tolerant Parallel Processor

1.4.1 Architectural Overview

The basic unit on the FTPP is the cluster which contains four network elements and the
associated processors (see Figure 6). The network element (NE) is a Draper desighed
component. The four NEs are fully connected and operate in tight synchrony within the
network element core to perform message exchanges and to vote message exchanges.
Messages entering the NE core are exchanged and voted according to the class parameter of
the message. In addition, since messages are addressed using unique identifiers, the
operation of the NE is highly contingent upon the system configuration in identifying the
physical hardware associated with these source and destination addresses.

In the FTPP prototype cluster 1 (C1), each network element hosts up to four processing
elements (PE) each of which are standard processors with local memory. The processors
currently employed are Motorola 68020 processors; however, this selection is not a design
criterion and, in fact, the FTPP is capable of supporting heterogeneous processors. Each
processor communicates with the hosting NE via transmit and receive FIFOs which the
processors access via a VSB bus.

Each network element and the associated processors comprise a fault containment region
which satisfies the requirements for fault containment, namely, electrical isolation, physical
isolation, independent power and independent clocking.

Virtual groups are logical views of the processing resources capable of accepting work in a
parallel processing environment. Using this concept, the physical addresses of the
processors as well as the redundancy level of a processing group can be concealed from the
view of the programmer. A unique identifier is assigned to each virtual group; this is the
virtual group identifiet (VID). Virtual groups can be composed of any number of
processors up to 4 processors; consequently, they may be simplex, duplex, triplex or
quadruplex. Within a VID each processor is a channel (also referred to as a member). In
the case of a quadruplex, the first channel is designated channel A; the second, channel B;
the third, channel C; and the fourth, channel D. Similarly, simplexes have only channel A
- components. When operating redundantly, each processor within a VID executes a suite of
tasks which are functionally congruent with the other members of its VID. For example, in
an avionics application each processor of a redundant virtual group would execute the same

11



navigation task onidentical inputs. On the other hand, simplex VIDs are rrierely individual --
processors executing tasks with no redundancy. VIDs are comprised of processors each of
which must be resident in a different fault containment region in order to satisfy the
theoretical requirements of Byzantine resilience. For example, a quadruplex would
comprise processors resident on each NE.

Member of virtual
group Q1

FIFO address

- Processing Element (PE)

Member of virtual
group Q1

(-"',.

Member of virtual
group QI

Region

Member of virtual
group Q1

Figure 6 - FT?P Cluster Architecture

—— Network Element (NE)

" | <@— Fault Containment

Q1 Quad 1
T1 Triad 1 :
$1-9 Simplexes 1-9

Fault tolerance on the FTPP is ensured by groupihg 3 or 4 processors into VIDs called fauir
masking groups (FMG). Fault manifestations in a fault masking group can occur without
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any degradation in system performance or correctness. Furthermore, these faults can be
readily diagnosed.

The system configuration table is the mapping of processors to the virtual group identifiers.
This mapping identifies the NE hosting the processor as well as the FIFO address through
which the processor communicates with the NE. Since all communication within the
system is based upon the VID, the system configuration table is resident in the network
elements as well as in the processors. Maintenance of this table is provided by a special
broadcast message interpreted by both processors and NEs and by adherence to a strict
protocol when the system configuration is modified.

Figures 6 and 7 define a sample system configuration consisting of 1 quadruplex, 1 triplex,
and 9 simplexes. '

VID Member NE id FIFO id

A 0 0

B 1 0

Ql 12 - . :
D 3 0

A 1 1

T1 9 B 3 1

C 0 1

s1 1 A 0 2

s2 2 A 0 3

'$3 8 A 1 2
S4 4 A 1 3

S | 5 A 2 1

s6 0 A 2 2

7 3 A 2 3

S8 11 A 3 2

$9 10 A 3 3

Figure 7 - Sample Configuration Table

13



1.4.2 Commuhication Mechanisms

Virtual groups communicate via messages which are of 4 basic classes: voted messages,
source congruency messages, a synchronization message, and configuration update
messages. A voted message is one sent by all members of a redundant processing gréup.
This message type is employed only when exact consensus amongst all redundant members
is expected. Conversely, a source congruency message is originated by a simplex
processor or by a member of a redundant processing group requiring a channel-specific
exchange of information. The synchronization message is employed to synchronize
members of a virtual group. The configuration update message is initiated by a virtual
group to modify the VID/processor mapping resident both in the network elements and in
the processors. A

Each member of a VID requests a message transmission by sending the message body to its
associated transmit FIFO followed by storing the message class in the class FIFO. If a
majority of members of a VID request a transmission, the class is voted by the NE core to
determine the exchange and voting mechanisms. In addition, the destination VID is voted.
Subsequently, the message body is manipulated according to the message class.

Message processing within the network element core is handled on a VID-by-VID basis.
When a majority of the members of the source VID request transmission of a message, that
message is eventually processed and delivered to all members of the destination VID.
Consequently, the ordering of messages to the destination VID is preserved, thereby
guaranteeing that all members of the destination VID receive messages in the same order.

Redundant members of VIDs execute functionally congruent tasks. Since their sequence of
tasks is congruent across all members, messages transmitted during their normal executing
cycles will necessaﬁly be equivalent as well. Therefore, the message streams emanating
from the different members will be identical at least in the message class when no fault
exists. This concept is the basis of functional synchronization which is discussed in a
subsequent section.

14



1.4.2.1 Voted Messages

When the redundant members of a VID transmit a class I message (voted message) the
NEs exchange their copies of the message, create a bitwise voted copy of the message, and
compare each copy with the voted copy. This final step generates a vote syndrome which
is appended to the message. Network elements which host members of the destination VID
deliver the message to the appropriate FIFO; other NEs discard the message.

Figures 8§ through 10 depict the transmission of a message x from the triply redundant VID
1 to VID 2 which is also configured as a triplex.
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Figure 8 - Transmission of Class 1 Message
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1.4.2.2 Source Congruency Messages

Class 2 messages contain channel-specific information such as the value of a processor
clock. The network elements perform 2 rounds of exchange of this message, create a
bitwise voted copy of the "reflected” copy and compare each "reflected” copy with the
voted copy to generate the vote syndrome. Delivery of this message is similar to that of
class 1 messages.

Since each NE operates simultaneously on only 1 message, each member of a fault
masking group must agree upon which member's channel-specific data are being
exchanged. This is achieved by the definition of 4 different class 2 messages. A "class 2
from A" message identifies the VID member A as the source.of the message information.
However, all members of the VID must participate in the transmission of the "class 2 from
A" message. This requirement is necessitated by the fact that the NEs vote. the message
class from each member of the transmitting VID. If one member transmits a "class 2 from
A", the second member sends a "class 2 from B" and the third member sends a "class 2
from C" simultaneously, there will be no consensus on the class of the message. A bitwise
voted class is gencré.ted and the messages from each member of the sending VID are
handled according to this voted class. Therefore, in order to perform an exchange of
information where each member receives each other’s copy of some information, a series
of messages containing this information must be sent by each member of the VID. Each
member of a triply redundant VID must sequentially send a "class 2 from A" message, a
"class 2 from B" message and a "class 2 from C" message.

Figures 11 through 13 describe the sequence of events in the processing of a class 2

message. The delivery of a class 2 message is identical to the delivery of a class 1 message
depicted in Figure 10.
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Figure 13 - Network Element Exchange of "Reflected" Class 2 Message

1.4.3 Synchronization

As stated earlier, each member of a VID executes a suite of tasks which are functionally
congruent with the other members of the VID. In order to reduce the time skew among the
members they must perform some synchronizing act. Since synchronization occurs after
some function or sequence of functions has been completed, this methodology has been
must periodically synchronize. This sequence of functions between synchronization points
is referred to as a frame in Figure 14.

The implementation of functional synchronization requires that the sending VID also
receive the synchronization message. The process known as scooping implements this
concept (see Figure 15). In essence, a task wishing to perform a functional
synchronization sends a scoop message to its own VID. Messages received prior to this
scooped message are stamped as readable. Furthermore, due to the fact that the NEs are

19



tightly synchronized, each member of the synchronizing VID is guaranteéd to receive the
message within a bounded skew of its other members.

Frame on
FMG Member

wait

wait

.

"Absolute" time

Figure 14 - Functional Synchronization

delivery delivery delivery delivery
of of of of
message message message Scoop

Figure 15 - Scooping a Message
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Functional synchronization is implemented by sending a class 0 message via the sync_self
primitive ‘or by performing a scp_msg primitive. Both of these scooping mechanisms
transmit a special message and block awaiting its return without rescheduling any other
tasks. Recognition of this special message is achieved by comparing all incoming
messages with the known message. The sync_self primitive sends a class 0 message
which has no message body; therefore, only the class of the incoming messages needs be
examined. On the other hand, the scp_msg primitive does transmit a complete message
requiring inspection of all incoming message bodies until the special message has arrived.
Upon resumption of the task calling these primitives, the members of the VID are
synchronized. The use of the sync_self mechanism is limited by the fact that the source
and destination VIDs must be identical. However, scp_msg messages also may include the
set of broadcast messages. o

Inter-virtual group synchronization among VIDs is providcdlﬁimply by sending messages
without the tight synchronization of the intra-VID protocols. The time when the message is
transmitted by one VID and delivered to another VID is not constrained. In fact, unless the
message is broadcast, the sending VID receives no explicit acknowledgement that the
message has been delivered. It can only be guaranteed that the message will be delivered in
the order sent and that the time of delivery to the redundant recipients will be bounded.

1.4.4 Operating System Functions

The FTPP operating system consists of both asynchronous and synchronous services. The
asynchronous services are interrupt driven tasks which include a facility to empty the input
FIFOs. '

The synchronous services are invoked by the scheduler. The operating system functions
include a time function, the front end processor host (FEP), the fault detection and
identification function, and the reconfiguration function. Application programs are invoked
synchronously concordant with the other operating system functions.
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1.4.4.1 Scheduler

The current version of the operating system is a real time system utilizing some of the
features of the Versatile Real Time Executive (VRTX) operating system of Hunter &
Ready, Inc. VRTX provides the primitives for task suspension, task resumption, and the
associated stack manipulations.

The core of the operating system is a non-preemptive scheduler which invokes the other
operating system functions and application tasks in a round robin fashion. Tasks (also
called services) are scheduled for execution once each scheduling loop or upon receipt of a
message for that service; the selection of the scheduling mechanism is determined by the

task designer.

Tasks may communicate either via global variables shared with processes in the same VID
or via messages to processes executing in other VIDs. Since the scheduler is non-
preemptive, suspension of the task is the responsibility of the task itself. Task developers
must be judicious in relinquishing control of the processor to prevent starvation of the other
tasks.

The fixed time frame typical in real-time systems has been relaxed for the C1 prototype.
This departure from normal real-time system implementations results from the requirement
to preserve the functional synchronization concept which requires that message streams
across all members of a VID be consistent. The transmission of messages from tasks
which are executed using time based preemption on non-clock deterministic processors
could violate this constraint and result in the transmission of interleaved messages from
various tasks.

1.4.4.2 Messagé Ifandling

Messages are defined by the application task but are addressed to a VID and a service using
the user selected message class. The class of the message is defined by the task to be either
a normal message (that is, class 1) or an explicit class 2 message. In the event that the
redundancy of the source VID is simplex, normal messages are translated to a class 2
message by the operating system thereby concealing the underlying redundancy level of the
task.
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Conveyance of a message is initiated by a snd_msg primitive. The operating system
divides this message into packets, computes and appends a checksum to the message, and
transmits the individual packets via the output FIFOs. The snd_msg function is a blocking
invocation which transmits the message immediately. '

As indicated earlier, the processing of incoming packets is handled both asynchronously by
an interrupt-driven process and synchronously by the scooping mechanisms. In either case
the input FIFOs are polled to determine the presence of a packet. Received packets are
deposited in a receive packet queue and relevant information regarding the status of the
message under construction is saved in the data structures associated with each source VID.
Header information regarding the message length is retrieved and subsequent packets are
linked in the receive packet queue to complete the task's message.

Completed messages can be read by a task only after a subscqucnt»messagc has been
identified as either a scoop message or a class O message at which time a message is
stamped as readable. When a message has been stamped and when an inquiring service
requests retrieval via the get_msg, the message is reconstructed from the receive packet
queue into a contiguous byte stream. The get_msg function is non-blocking and returns the
message and a boolean value indicating whether a message is available.

1.4.4.3 Time Keeper

In order to create a uniform clock available to all VIDs within the system, a time keeper
function was devised. One virtual group in the system is responsible for the function of
reading its local processor clock and broadcasting a consistent, successively increasing time
to each VID. In the event that the time keeper is redundant, each member of this VID reads
its local clock, exchariges these values with each other using class 2 messages and
performs a mean value select to compute the system time which is then broadcast.

1.4,4.4 Front End Processor Host
In addition to other Operating System (OS) functions, one simplex VID has the static role

of being the designer's window into the system. The Front End Processor Host (FEP
Host) is an OS function which interfaces to a Macintosh computer. The FEP host accepts
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messages from the operator via the Macintosh front end, composes messages and transmits
these messages to the appropriate VID. Likewise, VIDs may send information to the FEP

host for display purposes on the Macintosh.

1.4.4.5 Fault Detection and Identification

One of the cornerstones of the FTPP is its ability to withstand faults. However, to keep the
system fully operational faults must be detected and removed as soon as possible.
Therefore, the fault detection and identification function (FDI) operates periodically to
monitor fault detection mechanisms. Faults which have occurred are remedied in a timely
manner to prevent possible system failure.

The major fault detection mechanism is the syndrome information generated by the network
elements and appended to each packet transmitted through the network element core. These
three bytes of error information are indicative of faults in either the processing elements or
network elements. Since the syndrome information is appended to the packet prior to
delivery, the FDI function on the recipient VID monitors the fault mechanisms.

The syndrome information is extracted from each packet and buffered as each packet is
scooped. Logging the syndromes in this manner preserves the functional synchronization
among members of a VID ensuring that the syndrome buffering is consistent. This
buffered syndrome information represents the perspective of each member of the VID
which is probably different than that data possessed by the other members of the VID.
Furthermore, in the case of a Byzantine failure, the other members would have dissimilar
information. The members of a VID performing the diagnosis may diagnose different
components or may differ in their opinions as to whether a fault even exists. For these
reasons, the members of a redundant VID exchange an error vector indicative of whether an
error exists. This is accomplished by an exchange of these error vectors via class 2
messages. After this exchange each member of the VID will have a consistent set of error
vectors -- one for each member. Subsequently, the VID analyzes the vectors to determine
if an error has occurred. In the event that one has occurred, the syndrome exchange phase
is invoked to disseminate the detailed diagnosis information. Similarly, a series of class 2
messages are created to exchange detailed syndrome information. When this data has been
disseminated, the diagnosis phase is entered. ‘
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The repertoire of diagnosable faults is currently limited to those with strong signatures. .
Not only must all members of the diagnosing VID detect the error but each member of the
diagnosing VID must also target a specific component as faulty. The faulty component is
identified using the class of the message as well as the system configuration table (in the
event of a processing element fault) to target the specific hardware component. Table 1
defines the repertoire of diagnosable faults; the mechanisms are indicated.

Component Configuration S:mdmm:-M;ssaze_Clm

Processor FMG member vote 1
NE - vote 2
- NE - synchronization -

Table 1 - Diagnosable componex_its

Diagnosis of a faulty component may occur by any virtual‘ "group, even the faulty VID
itself, since a VID is theoretically guaranteed to operate correctly even in the presence of a
fault. However, precautions exist to ensure the nonparticipation of the faulty processor in
both the error vector and syndrome exchanges.

When a component is diagnosed, a message is broadcast to the reconfiguration service on
all VIDs. This permits all sites to be cognizant of the fault and to modify status information
to prevent subsequent diagnoses. A processor fault diagnosis will initiate a reconfiguration
strategy designed to replace the faulty processor. On the other hand, in the C1 prototype
FTPP a network element cannot be replaced; instead syndrome errors emanating from a
diagnosed NE are masked, concealing possible faulty processo'ré resident on that NE as
well.

1.4.4.6 Reconfiguration

The reconfiguration task performs various functions associated with the creation and
dissolution of VIDs of the required redundancy level. Two reconfiguration strategies exist
to satisfy different operational requirements. These alternatives are a total reconfiguration
and a procéséor replacement reconfiguration. The total reconfiguration strategy establishes
a system configuration with VIDs of the specified redundancy levels. It attempts to satisfy
the request by creating redundant groups from simplex processors or by disbanding
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redundant groups to satisfy the need for the specified number of simplexes. This strategy -
is currently initiated by an operator command from the Macintosh front end processor
requesting specific numbers of simplexes, duplexes, triplexes and quadruplexes. This
strategy could also be invoked automatically during a mission sequence requiring a
modification in the redundancy levels for various tasks. Alternatively, the processor
replacement strategy is invoked upon receipt of a reconfiguration request triggered by the
diagnosis of a faulty processor.

In general, each reconfiguration strategy performs the same general sequence of operations:

Contend for reconfiguration authority
Virtual group selection

Global notification

Configuration table updates
Synchronization of virtual group
Reconfiguration termination.

SRR IR SR

The reconfiguration authority (RA) is a single VID which directs the reconfiguration
operations of deciding which VIDs shall be reconfigured, of deciding which VID shall be
the system time keeper, of initiating the reconfiguration message sequence and of accepting
acknowledgements. The selection of the RA is implemented by a contention algorithm in
which VIDs satisfying certain criteria broadcast a "contend for RA" message. The source
VID of the first broadcast message received becomes the RA; subsequent "contend of RA"
messages received are discarded.

The RA selects. those VIDs to be reconfigured; this is highly dependent upon the
reconfiguration strategy invoked. In the case of total reconfiguration, the RA studies the
current system configuration, the requested configuration, and charts a plan of attack
consisting of creating or disbanding VIDs where necessary. For a processor replacement,
the RA merely searches for a simplex VID which resides in a fault containment region
different from the other non-faulty members of the compromised VID. If there is no
candidate simpl. x, a message is broadcast to FDI indicating that the VID is unrepairable.

The selection of VIDs to be reconfigured is succeeded by a broadcast global notification
message indicating those VIDs chosen. All VIDs must acknowledge this message; in
effect, confirming that they will not send any messages to those VIDs undergoing

26



reconfiguration. ‘ This precaution is necessary to avoid the transmission of a message "..
addressed to a VID which may disappear or which may alter its VID/physical hardware
mapping. Broadcast messages may still occur during reconfiguration without any
restriction. The RA may send messages addressed to those VIDs except during the
configuration table update phase. ’

A well ordered series of configuration update messages are broadcast by the RA to modify
the mapping of VID to physical NE/FIFO. This process activates the new virtual groups
causing them to enter their synchronization phase. The processor replacement strategy is
constrained to maintain the identity of the diagnosed VID.

A VID ﬁndergoing reconfiguration synchronizes its members by scooping a special
message transmitted to itself. Upon receipt of this message all members operating in
unison send an acknowledgement to the RA indicating their successful synchronization.
The total reconfiguration strategy creates virtual groups which execute from an initial state;
all tasks which had been executing prior to the reconfiguration are terminated and new tasks
are created when this new VID is born. Furthermore, since any unread messages were
addressed to the "old" VID, the packet queues are flushed. The processor replacement
strategy reconfigures 2 VIDs -- a fault masking group in which a member is replaced and a
faulty simplex VID. The fault masking group resumes in an aligned state; the alignment
process copies the memory image from a non-faulty member to the new member so that
once the alignment process completes tasks may continue to operate with minimal
disruption. Unlike the total reconfiguration strategy, this reconfigured VID is not
reinitialized by killing tasks and subsequently recreating them as a "new” VID. Likewise,
the packet queues are not flushed; the "new" member of the VID receives a copy of the
packet queues by virtue of the alignment process. The faulty simplex resumes in an initial
state as in the total reconfiguration strategy. As indicated previously, this simplex would
normally enter a diagnostic phase to determine its health; however, this is still
unimplemented. ' ‘

~ Undil the RA receives the acknowledgement from the newly formed VIDs, the system is
still in an interim state. All other VIDs are unable to communicaté‘directly with those
reconfigured VIDs. However upon receipt of the acknowledgements, the RA lifts this
restriction by broadcasting a reconfiguration termination message.
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2.0 The AF-FTPP Modifications and Utilities

To permit the execution of the Activation Framework on multiple processors of the FTPP,
an interface between the AF and the FTPP had to be designed, and the AF, AFOs, and
FTPP Operating System had to be modified. This AF-FTPP Interface was developed to
allow the integration of the Ada based AF and AFOs with the C based FTPP Operating
System. The AF and AFOs were modified to interact with this Interface and thus utilize the
FTPP Operating System primitives. Further, the FTPP Operating System was augmented
to support the AF methodology and the AF-FTPP Interface. In addition, to allow the
execution of applications other than the Event Diagnosis Expert, the Rules to Evidence
Flow Graph (EFG) and EFG to Activation Framework Object translators were modified
permitting the parsing and interpretation of more general rule sets.

A set of udlities was also developed during the KRAPP project. They were created to ease
the evaluation of the parallelized AF and to minimize the cost of the integration. First, a
load balancer was designed and implemented. This procedure parses the AF frame file and
determines a sub-optimal AFO to VID mapping. Additionally, an automatic load module
generator was implemented. This facility uses the load balancer and a set of code
generators to create FTPP load modules. Further, to enable message transmission and
reception from a remote source, a data insertion and capture facility was designed. Finally,
a conversion program (from "VOX" object module format to UNIX System 5 "a.out”
format) was written to enable the development of an Ada - C mixed system while utilizing
CSDL's currently available resources.

The following sections detail the design and implementau'ori' of the aforementioned
modifications and utilities.

2.1 The Rules to. EFG and EFG to AFOs Translators

A suite of AFOs is generated from a set of Horn clauses, or rules, that represent the
knowledge of an intelligent system. To create the AFOs, the Hom clauses must be parsed,
interpreted, and ‘ranslated. This procedure is completed in two independent steps. First,
the Horn clauses are converted to an Evidence Flow Graph (EFG), which is an
intermediate set of data structures that characterizes the clauses. Second, the EFG is
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Figure 16 - The Rules to AFOs Translators

translated into AFOs. These two translators are shown in Figure 16. They were designed
and implemented in Ada by Worcester Polytechnic Institute under the Knowledge
Representation into Ada Methodologies project (KRAM).

The translators developed by WPI had a limitation; the EFG and AFOs, that were
generated, were tailored to the Event Diagnosis Expert application. For example, the
names of Event Diagnosis AFOs were incorporated into the intelligence of the translators.
Furthermore, the connectivity of the application was known apriori and embedded into the
translators. Additionally, assumptions were made conceming the data structures being
passed between the AFOs, and this information was incorporated into the translation logic.

An extension of Rules to EFC and EFG to AFOs translators, such that they are capable of

interpreting and processing a general application, was desirable. Accordingly, under the
KRAPP project, these translators were modified. Specifically,
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1. The List Management System (LMS), which is the fo{indation of the -
ranslators, was modified to permit its execution on a VAX 8650 using the
VAX Ada Development System. Certain Ada constructs, which are not
supported by the VAX, are used by LMS. Subsequently, these constructs
were replaced. :

2. The syntax of the Horn clauses was extended to allow the specification of
multiple input and output ports. The translators were modified to interpret
this enhanced syntax and automatically generate the corresponding
connectivity. This extension enabled the translation (Rules to AFOs) of
general purpose applications.

3. The assumptions concerning the data structures passed between the AFOs

" were relaxed. While still being limited to boolca.ns and integers by the Rules
to EFG translator, the EFG to AFOs translator was enhanced to parse and
interpret generalized data types. As a result, if the Rules to EFG translator is
modified to allow Generalized Object (GO) representation in the EFG, then
the GO data types would be maintained and passed to the AFOs by the EFG
to AFO translator.

4. The EFG to AFOs translator was modified to restructure the AFOs so that
they could be executed on the FTPP.

In addition to the translators, WPI developed a preprocessor that uses the frame file to
create "support procedures” for the AF (shown in Figure 16). The frame file is generated
by the EFG to AFOs translator, and it characterizes the attributes of the AFO suite (e.g.,
names, number of inputs and outputs, connectivity, etc.). The AF preprocessor creates
three AFO/AF interface files written in Ada and a command file for compiling and linking
the AFOs. The AFO/AF interface files are: (1) an Ada package that controls the
initialization of the AFOs (af_start), (2) a procedure that starts the AF (it is called the af_run
procedure and is discussed in Section 2.2), and (3) a procedure that permits selection and
execution of the AFO priming conditions (execuze). This preprocessor was also modified
by the KRAPP project. These modifications were performed to permit and ease the
execution of the AFOs on the FTPP, the compilation of the AFOs on a MicroVAX 111, the
conversion and translation of the Ada object modules to Heurikon C object modules
(discussed in Section 2.5), and the creation of FTPP load modules.

The modifications made to the translators and preprocessor were tested using the Event
Diagnosis Expert. Specifically, the EFG and AFOs generated by CSDL were compared to
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those created by WPL Furthermore, the extensions incorporated into these procedures
were exercised and verified by developing a set of Horn clauses that represents a data flow
diagram for a Real Time controller. The translation process correctly generated a suite of
57 AFOs and the corresponding support files.

2.2 The Interface between the Activation Framework and the FTPP
Operating System

The Activation Framework was developed by WPI and is written in Ada. The FTPP
Operating System was designed by CSDL and implemented in C. To allow the execution
of the AF on the FTPP, an interface between the AF and FTPP Operating System had to be
developed. This interface, whose addition caused modifications in both the AF and the
FTPP Operating System, is composed of numerous C and Ada procedures.

For clarity, the AF-FTPP Interface is segmented into four sections: (1) scheduling, (2)
message transmission, (3) message reception, and (4) performance timing. These sections
are depicted in Figures 17 through 20, and in each figure, the work ﬂperformed by WPI is
separated from that completed by CSDL. Albeit the AF-FTPP sections are separated in this
discussion, they are closely intertwined.

2.2.1 AFO Scheduling

As mentioned earlier, the AF-FTPP Interface permits the integration of the AF and AFOs
with the FTPP Operating System. The scheduling component of this Interface is shown in
Figure 17, and it allows the FTPP Operating System to: (1) initialize the AF, (2) invoke the
AF scheduler to determine the next AFO to execute, and (3) execute the transfer function of
a designated AFO. Furthermore, if the FTPP's redundancy management (RM) processes
were incorporated into the AF-FTPP methodology, then the AF-FTPP scheduler would
also execute the RM tasks.

With respect to Figure 17, the AF-FTPP scheduler is the process sched. To initialize the
AF, sched calls the procedure af_run. As discussed in Section 2.1, the af_run procedure is
automatically generated by the AF preprocessor, and its content reflects the AFOs involved
in the application. More specifically, it is a series of invocations, one set per AFO, which
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constructs a database for the AFO suite. This database is called the Frame_Node, and it is
initialized using WPT's AFO_Init and Port_Cr procedures. The AFO_/nit procedure is
responsible for allocating and initializing an AFO data structure whereas the Port_Cr
procedure creates-and initializes a port data object. These procedures were augmented by
CSDL to permit the use of multiple processors and to integrate the AF and FTPP
schedulers. Namely,- the Init_VID and Inir_SID functions were developed and
incorporated into the AFO_/Init procedure. The Init_VID function is used to return an
identifier that indicates the location of the AFO (the VID on which it resides). Further, the
Init_SID function provides an identifier which is necessary to schedule the AFO (gives the
AFO's Service ID or SID). The Frame_Noue database was also extended to allow the
recording of these VID and SID fields. Additionally, the Port_to_AFO function was
implemented and integrated with the Porz_Cr procedure. It informs the AF-FTPP Interface
of the AFO/port assignments.
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Each AFO and its associated ports are initialized on each VID of the FTPP, regardless of
the AFO to VID distribution. This is performed to ease and optimize the inter-VID
communication. If the AFO initialization process was not the same on each VID, then,
when communicating to a remote AFO, the name of the destination port would have to be
encoded into the message (the port name is 60 bytes long). Nevertheless, since the
initialization process is identical on all of the VIDs, the AFO and port identifiers are global
variables. As a result, only the destination identifier is required in the message (port ID is
merely 4 bytes long), and thus the overhead due to the communication process is

After thé AF is initialized, the "external input AFOs" are primed by the AF_Exec task
(AF _Exec is invoked from the af_run procedure). This function of initially priming the
"external input AFOs" has been simulated by a hand-coded Ada procedure (input_afo)
which sends messages to these external input AFOs. These AFOs distribute the data that is
inserted into the applicaton. For the Event Diagnosis Expert (illustrated in Figure 14), the
external input AFOs are eq_mode_health, pilot_not_busy, health, and jrids. After one or
more of these AFOs have been primed, the execution of the Event Diagnosis Expert can

begin.

To determine the next (or first) AFO to execute, the sched process invokes the AF
scheduler which is called Tsk_Loop. This procedure locates the primed AFO with the
highest importance. To determine if an AFO is primed, the Tsk_Loop procedure checks
the AFO's AF_Primed field (this field is updated during message delivery and retrieval).
Further, to calculate an AFQ's importance, the Tsk_Loop pt:ocess calls the execute
procedure with the AFO's Importance field. When the primed AFO with the highest
importance is determined, the Tsk_Loop procedure updates the exec_afo_sid field to reflect
the AFO's identity. -

Sched uses the exec_afo_sid field to execute the corresponding AFO transfer function,
Trans, which is embedded in a VRTX task. When the Trans function completes, it calls
the FTPP primitive sus_Iv2 to return control to the sched process. After sched is resumed,
the AF_Exec task performs a synchronization thereby scooping all incoming messages as it
removes the messages from the FTPP input queue. The AF_Exec process retrieves the
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messages one at a time and delivers them to their destination AFOs. When the FTPP input
queue is empty, the Tsk_Loop procedure is called to determine the next AFO to execute.
This three step process (determine next AFO, schedule AFO, and deliver remote messages)
is repeated until the Event Diagnosis Expert completes.

2.2.2 AFO Message Transmission

The second major component in the AF-FTPP Interface is responsible for message
transmission and is illustrated in Figure 18. The AF primitive Sad_Obj transfers a
specified object to a designated port of an AFO. The Sad_Obj procedure determines the
location of the destination AFO by invoking the Return_Port_to_AFO function. This
function returns the AFQ that owns the destination port, if that AFO is local to the VID.
Conversely, it returns -1, if the destination AFO resides on a remote VID. If the
destination AFO is on same VID as the AFO sending the message, then the AF procedure
AF _Deliver is invoked to complete the communication. Alternatively, if the destination
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AFO resides on a réinotc VID, then the AF-FTPP Interface procedures -
Return_Port_to_VID and Snd_Remote are called to perform the message transfer. The
Return_Port_to_VID function indicates the VID on which the destination port resides. The
Snd_Remote procedure converts the message from the AF format to the FTPP format and
sends it to the destination VID using the FTPP Operating System primitive snd_msg.
Subsequently, the local memory used by the AF message is deallocated using the Free
procedure.

2.2.3 AFO Message Reception

The AF-FTPP component responsible for receiving messages from AFOs on remote VIDs
is depictéd in Figure 19. As mentioned earlier, the sched process executes the AF_Exec
task to deliver remote messages to the local AFOs. When scheduled, the AF_Exec process
calls the External_Input procedure. The External_Input procedure queries the VID's input
queue to locate a message. If a message exists, then the merhory necessary to store it is
allocated (via the Malloc and Sbrk functions), and the message is converted from the FTPP
format to the AF format. The message is then delivered to the appropriate port of the
destination AFO using the AF primitive AF_Deliver. Furthermore, during the delivery
process, the execute procedure is invoked to determine if this new message causes the
destination AFO to be primed.

2.2.4 Performance Timing

The final component of the AF-FTPP Interface is a timing utility, and it is shown in Figure
20. Currently, the only method at CSDL to integrate the AF with the FTPP Operating
System requires_four compilers, two object module translations, and four loosely
connected computers (discussed in detail in Section 3). Consequently, because of the
configuration control and continual code modifications that are necessary, the recording of
performance measurements using discrete digital outputs and an oscilloscope, while very
accurate, is extremely tedious. To facilitate the measurement process, a timing procedure
using the local PE clock was developed. This process is non-intrusive, and it permits the
measurement of multiple functions at once. This timing mechanism uses two procedures:
one to start the recording process and another to stop it.
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The start proceduré:

1. Accepts an input parameter to associate the reading with a position in the
code.

2. Reads the time which is maintained by the PE.

3. Records the time in an array entry, whose position is indicated by the input
parameter.

The stop procedure:

Accepts an input parameter to correlate the stop time with the start ime.

Reads the time.

Subtracts the start time from the stop time to calculate the elapsed time.
Determines the number of invocations of the start and stop procedures that

SR N

were performed in this interval, inclusive.
Compensates for the iming intrusion by using (4) to adjust the elapsed time.
Keeps a cumulative record of the number of timing calls (made with this input

W

parameter) and the elapsed time.

By using this process, any set of independent or nested procedures can be measured at
once. Further, the development of this process permitted CSDL to embed the measurement
facility in the AF and AFOs. Accordingly, a comprehensive set of performance
measurements can be recorded for each execution of the Event Diagnosis Expert without
modifying any of the software.

A complete set of process description for the AF-FTPP Interface is presented in Appendix
A. Each diagram provides the process' inputs, its outputs, and a functional description.

2.3 The Modification of the Activation Framework

The Activation Framework was designed to execute on a personal computer (PC) using an
Ada development system. Accordingly, WPI developed several utilities to enable the AF to
operate in a "stand alone" fashion. For example, WPI implemented a scheduler in
assembly language to allow the AFOs to be executed on a priority basis. This stand alone

Ada AF was given to CSDL to be used for the KRAPP project. '
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The AF was modified to permit its execution on the FTPP. The execution of the AF on the
FTPP is a more complicated process than on a PC, primarily because the AF must be
integrated with the FTPP Operating System. For instance, the AF had to be modified to
utilize the FTPP scheduler rather than the WPI scheduler. Furthermore, the procedures that
supported the AF's stand alone operation had to be removed. In addition, since the Ada
compilers used by WPI and CSDL were different, the Ada structures that the CSDL
compiler does not support had to be replaced. The dynamic memory allocation schemes
used by WPI and CSDL also differed, and consequently, further modifications were
necessary.

A detailed listing of the modifications and additions made to the AF are presented in
Appendix B. '

2.4 The Modification of the Activation Framework .'Objects"

Unlike the AF, the modifications required to allow the execution of the AFOs on the FTPP
were few and minor. These modifications were necessary to ensure correct scheduling
control flow and to send output messages to the FTPP Operating System. The adjustments
performed by CSDL were:

1.  Acall to the FTPP primitive sus_{v2 was added to each AFO transfer function
to allow the embedding of the function in a VRTX task.

2. The transfer function of each AFO was embedded in an endless loop. This
was required to permit multiple invocations of the transfer functions.

3. The System_Output AFO was modified to call the AF-FTPP Interface
procedure print_system_output. Accordingly, the output messages sent by
the System_Output AFO could be printed by the FTPP Operating System.

Each modification to the AFOs was completed via the translators. That is, the translators
were adapted to generate AFOs with the desired change.
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2.5 The "VOX" to "a.out"” Translator

As previously mentioned, AF is written in Ada and the FTPP Operating System is written
in C. The KRAPP project used a VMS based Verdix Ada Development System to compile
the AF, a UNIX based Heurikon C System to compile the FTPP procedures, and- the
Heurikon System to link the resultant object modules. Because the object modules
generated by the Verdix System differed from those created by the Heurikon, a conversion
process was required and consequently was developed by CSDL.

This conversion process involves three basic steps: (1) converting the Verdix object module
format to an intermediate format, (2) transferring these intermediate modules to the
Heurikon System, and (3) converting the intermediate object modules to the Heurikon
"a.out" modules. The use of an intermediate file format was required to permit the transfer
of the files over an Ethernet connection. Step 1 of the process is performed on a MicroVax
TII Workstation which hosts the Verdix Ada System, while Step 3 is performed on the
Heurikon System.

2.6 The Load Balancer

The optimal mapping of a suite of AFOs to a number of VIDs is a complex time consuming
process. Under the KRAPP contract, we developed a sub-optimal load balancer. It was
written in C on a Sun Workstation with a UNIX Operating System.

The load balancer determines the AFO to VID mapping by rrﬁnimizing the inter-VID
connectivity. The connectivity was selected as the sole basis of distribution, because it
could be extracted from the frame file and the initial development of the load balancer was
concerned more with functionality than comprehensiveness.

As illustrated in Figure 21, the input to the load balancer is the frame file and the number of
VIDs. The balancer parses the frame file, determines the number of AFOs, and generates a
conne:tivity matrix. The basis of the mapping algorithm is an "assign and evaluate"
process. That is, an arbitrary AFO to VID distribution scheme is selected, and the inter-
VID connectivity is calculated. The distribution is then changed, and the connectivity is
recalculated. This distribution-calculation process is continued for a pre-specified number
of iterations. Finally, the mapping that minimizes the connectivity is chosen.

40



Number of
ViDs ..

W

Load Balancer

Generated
Outputs

s lor. Makedi

Figure 21- The Load Balancer

The output of the load balancer is four files: a verbose configuration listing, a terse file that
depicts the AFO to VID mapping, a file for decoding the intermediate AFO object modules,
and a listing of the AFOs that is used to create a Makefile. The configuration listing, called
config.test, is a readable ASCII file specifying the number of VIDs, AFO's transfer
function, relative. AFO number, and AFO to VID assignment. The second file, named
global.afos, is a concise record of the AFO to VID distribution. The latter file is used by
the Automatic Load Module Generator to create an FTPP load module.

To ease the third step of the object module conversion process (discussed in Section 2.5),
the load balancer generates a UNIX shell script which is the third output file. This script
file, called ud_afos, is used to convert the intermediate object module fumat to the a.out
format. This program invokes the conversion program for each AFO object module, thus
permitting the user to automatically decode the modules rather than perform the process by
hand. Similarly, the fourth file, named afos_for_make, is created by the load balancer to

41



facilitate the creation of the Makefile (the Makefile utility is discussed in more detail in
Section 2.7).

2.7 The Automatic Load Module Generator

It was desirable to develop a method for automatically generating FTPP load modules,
because such a procedure: (1) can be used in conjunction with the load balancer, (2)
reduces the probability of mistakes, and (3) provides a friendlier user interface. An
Automatic Load Module Generator (ALMG) was written in C. Because of the lack of a
unified development system, it consists of two stages, one that resides on a Sun
Workstation and the other on the Heurikon System. (Note: this is temporary, resolvable
inconvience that resulted because the KRAPP project did not have an Ada compiler for the
Sun Workstation; it is not an unavoidable, major drawback of the KRAPP project.)

The FTPP Operating System is composed of many C modules. To record the inter-module
dependencies and facilitate the linking process, the UNIX Makefile udlity is used. An
FTPP programmer uses the Makefile utility to automatically compile C procedures into
object modules and link object code into an FTPP load module. Because of the usefulness
of this facility, it is a major part of the Automatic Load Module Generator.

Another significant portion of the ALMG is performed by three code generators (illustrated
in Figures 22 and 23):

1. The app_sex.h code generator uses the global.afos file, which is generated by
the load balancer, to create a file that specifies the AFOs that are in the
application. Only one app_sex.h file is required per application.

2. The Iv2_init.c code generator uses the global.afos file to create a function
which, when executed, associates the AFO transfer procedures with VRTX
tasks. One /v2_inir.c function is generated per application.

3. The afo_to_vid.c code generator uses the global.afos file to create a procedure
that indicates the AFO to VID mapping. One afo_to_vid.c procedure is
.. generated per test.
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As stated earlier, the current implementation of the ALMG invelves two steps. First, a
preprocessing stage, which resides on the Sun Workstation, is executed. This process
accepts a frame file and the number of VIDs as input parameters. Subsequently, it invokes
the load balancer, the code generators, and then stores the output files in a temporary
directory. The second stage involves communication of the output files from the Sun
Workstation to the Heurikon System and the creation of an FTPP load module (only one
load module is required per test). After the files are stored on the Heurikon, the load
module is generated by invoking the Makefile utility (depicted in Figure 24) which links the
AF, AFOs, FTPP Operating System, and AF-FTPP Interface into one executable module.
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Figure 25 - The Test/Code Management
System

After the load module is created, it is downloaded to one or more VIDs. Subsequently, the
AF and AFOs are executed on the FTPP, and performance measurements are taken. The
metrics, along with AFO to VID configuration, can then be recorded using a test/code
management system. An example of such a system is shown in Figure 25.

2.8 Remote Data Insertion and Capture

A method of inserting and capturing messages is necessary for the execution of a real-time
complex intelligent system. The method suggested by CSDL utilizes a Sun Workstation as
a remote source/destination. In addition, this process uses a Motorola MVME 147 board
(30 Mhz. 68030 processor with 4 Mbytes of RAM) as a gateway controller. The gateway
software to support the data insertion and capture will reside on the Sun, the 147 board,
and a gateway VID.
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The data insertion process involves several steps. First, the source messages must be
placed in a file on the Sun Workstation. Second, the gateway software, which resides on
the Sun, has to be downloaded to the 147 board. Third, the message file is transferred to
the 147 board, and the gateway software is started. Last, the AF and the FTPP Operating
System are executed allowing the insertion of messages.

The data capture process also involves multiple stages. The messages, whose destination
is the Sun Workstation, are tagged, and sent to the gateway VID. The AF-FTPP Interface
on the gateway VID, when noticing that the messages are tagged for the Sun, sends them to
the 147 board. The gateway software on the 147 board stores the messages in a file.
When the run is complete, the message file is uploaded to the Sun for subsequent analysis.

The current design of the message insertion process uses a predefined location on a
gateway VID to transfer the messages. The messages are sent one at a time,.and a simple
handshaking process is used to coordinate the communication. Specifically, the gateway
software on the 147 board checks the handshake flag and if it is reset, sends a message and
sets the flag. The communication software on the VID polls the flag to detect the presence
of a message. If the flag is set, the input message is sent to the destination AFO, and then
the flag is reset.

The current design of the data capture procedure also involves a handshaking protocol.
The software on the gateway VID checks a handshake flag (a different flag than the one for
data insertion) and if it is reset, stores the outgoing message in a reserved memory location
on the VID and sets the flag. The 147 board polls the flag and when it is set, reads the
message. The 147 board then clears the flag, adds the message to the destination file, and
again queries the VID for another message.

The data insertion gateway software for the Sun Workstation and the 147 board has been
designed, implemented, and debugged. The corresponding communication software for
the FTPP is designed but needs to be implemented. Further, the data capture gateway
software has been designed, but it has not been written.



3.0 Development Environment

The aim of the development system is to create an FTPP load module which incorporates
the FTPP Operating System, the Activation Framework, the AF-FTPP Interface, and the
Activation Framework Objects which represent the application's rule set (that is, Horn
clauses). Because of the lack of a single development system which hosts all the software
tools necessary to accomplish this task, the creation of an FTPP load module requires the
use of four loosely coupled computer systems. Consequently, this overall task has been
divided into four phases closely corresponding to the four computer systems involved:

. Phase Computer system
Translation to AFOs VAX 8650 ‘
Compilation of AFOs and AF MicroVAX I .
Load Balancing SUN 3 workstation
Load Module Creation Heurikon UNIX

Figure 26 describes diagrammatically the sequence of operations spanning the various
computer systems.

Translation to AFOs

VAX 8650

'

Compilation of AFOs
and AFO/AF interface

MicroVAX il

'

Load Balancing
SUN 3

'

Load Module
Creation

Heurikon UNIX

Figure 26 - Development System Overview
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3.1 Translation to AFOs

The application is represented by a set of Horn clauses which describe inter-AFO
connectivity and data dependencies. The translation of these rules to AFOs is a two-phase
process which creates the AFOs and AFO/AF interface modules in the Ada programming
language. The two translators involved (Rules to EFG and EFG to AFOs referred to in
section 2.1) are written in Ada as well. These translators therefore must be compiled and
executed on a computer system which hosts an Ada compiler and runtime environment.
The VAX 8650 system was selected for this phase of development because of the
availability of the native VAX Ada Development System.

VAX 8650

Rules to EFG
Translator

Y

EFG 0 AFOs
Translator

- Frame file:

- represents data files

to MicroVAX I 10 SUN 3 [] - represents operations

Figure 27 - Translation to AFOs phase
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3.2 Compilation of AFOs and AFO/AF Interface Modules

Since the AFOs and the AFO/AF interface modules are targeted for execution on the FTPP
(a 68020 based system), an Ada compiler is required which generates object modules
suitable for execution on a 68020 processor. However, due to the lack of a cross compiler
on the VAX 8650, these modules are transferred to the MicroVAX III. This system has the
Verdix Ada Development System which is a cross-compiler targeting the 680x0 class of
processors. In addition, to automate the compilation process a command file is also
generated in parallel with the generation of the AFOs and AFO/AF interface files during the
"translation to AFOs" phase. This command file invokes the Ada compiler for each module
and converts the object module to an intermediate format. This format conversion serves
the dual purposes of effecting an efficient form for file transfer and of partially translating
the object module format from VOX format to UNIX System-5."a.out” format.

from VAX 8650 MicroVAX III
File transfer
AFOQ Compilation
and format
conversion
- represents data files
to SUN 3 [:] - represents operations

Figure 28 - Compilation of AFOs and AFO/AF interface phase
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3.3 Load Balahéing

The load balancer has been implemented on the SUN 3 workstation in an effort to
eventually unify FTPP development. The frame file generated on the VAX 8650 system is
transferred to the SUN 3 for inclusion in the Automatic Load Module Generator (ALMG).
The ALMG generates three C source files to allocate AFOs to VIDs, a command file for
decoding the intermediate Ada objects, and a makefile template for inclusion of the AFO
objects in the load module. These file are transferred to the Heurikon UNIX system. The
SUN workstation also operates as the gateway for transferring the encoded AFOs and
AFO/AF interface object modules to the Heurikon UNIX system.

from MicroVAX Tl *

File transfer

from VAX 8650 4 Sun 3

File transfer

[Famefle | [ #viss |

N

Automatic Load
Module Generator

!

-

~Objec

conversion file, ...

- represents data files

" 1o Heurikon UNIX [ ] - represents operations

Figure 29 - Load Balancing phase
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3.4 Load Module Creation

The Heurikon UNIX C compiler and linker consolidate all the object files to generate an
executable load module for the FTPP. However, before actual invocation of the linker, the
AFOs and AFO/AF interface object modules must be decoded using the object conversion
command file, and the makefile must incorporate the template to include the AFOs and
AFO/AF interface object modules in the load module. Execution of the UNIX makefile
facility compiles the C modules generated by the load balancer and links the AFOs,
AFO/AF interface modules, and the AF object modules with the FTPP operating system
object modules to generate the load module.

‘mm SUN / - Heurikon UNIX

File ransfer

object modules

Compilation and Link

l

- represents data files
D - represents operations

Figure 30 - Load Module Creation phase
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4.0 Performanqe Measurements

The execution of the Event Diagnosis Expert on the FTPP was evaluated for several
reasons. First, performance measurements were recorded to determine the speedup that
can be attained by utilizing multiple processors. Second, they were taken to identify
improvements that will enable more efficient execution of the Activation Framework.
Third, performance metrics were used to examine the effect that different load allocations
schemes had on the execution of the application. Last, thcy-were employed to determine
the effect of different AFO computational loads.

In addition to examining the performance of the Event Diagnosis Expert, we used the AF
Methodblogy and AF-FTPP utilities to execute a data flow structure for a Real Time
Controller. Similar to the Event Diagnosis Expert application, the AF implementation of
this Controller generates an AFO for each Horn clause. " However, the Controller
application requires 57 AFOs rather than the mere thirteen AFOs needed by the Expert. As
a result, the FTPP is stressed more executing the Real Time Controller AFOs than it is
hosting the Event Diagnosis Expert.

4.1 Preliminary Performance Measurements

It was desirable to dissect the AF to discover where the bulk of the processing time was
being spent. To accomplish this preliminary task, we used the Network Element Simulator
(NESIM) and one to three PEs to measure numerous intervals within the AF, AFOs, and
AF-FTPP Interface. '

The preliminary ﬁerformance measurements of the AF and AFOs recorded 38 procedures.
The intervals that were examined varied from the low level malloc routine (which performs
memory allocation) to the total Event Diagnosis Expert's execution time. A sample set of
the measurements that were recorded is given in Table 2. For each measurement, four
items were obtained: the interval identifier, the number of invocations, the average time
required to execute the interval, and the cumulative time (the number of invocations
multiplied by the average time per invocation). The interval ID was retained to coordinate
the measurement with the procedure being timed. The number of invocations was recorded
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Interval ID  Procedure Num. of Calls  Time/Call Total Time

(ms.) (ms.)
2 malloc 142 0.7 9
12 tsk_loop 20 222 4437
14 afo_init 14 . 8.7 80
16 port_cr 26 12 311
18 snd_obj 33 6.3 208
38 total execution time 1 7383 7383

Table 2 - Example of Preliminary Measurements

to determine the routines that are called most frequently. *Additionally, the time per
invocation and cumulative time were measured to quantify the performance and to identify
the bottlenecks.

The measurements taken during this evaluation differed from those obtained exercising the
actual FTPP hardware (the latter measurements are presented in Section 4.3). These
differences resulted primarily because this analysis used the NESIM. The NESIM
supports the inter-VID communication via a software program executing under Unix
whereas the FTPP uses dedicated hardware. Because the execution of the NESIM program
is time sliced by Unix, the inter-VID communication overhead due to the NESIM is
significantly larger than that required by the FTPP. Consequently, the time required to
execute AF-FTPP processes that involve inter-VID communication was substantially 1arger
using the NESIM than utilizing the FTPP hardware.

Another reason wh} the performance measurements recorded using the NESIM are
different than those measured employing the FTPP hardware is that in the former case, the
AF-FTPP Interface was logging debug information during its execution. When evaluating
the AF using the hardware, we recognized that this debug information was hindering the
system's perforrnance Consequently, this logging process was removed for all of the AF-
FTPP evaluations that employed the FTPP hardware. As a result, the performance
measurements recorded utilizing the FTPP are substantially smaller than those taken using
the NESIM.



Since the NESIM overhead is significant and debug logging was performed by the AF-
FTPP Interface, these times were, and should only be, used to determine where the bulk of
the execution time resides and to evaluate the performance gains attained by incorporating
enhancements (performance gains are discussed in Section 4.2). These preliminary
measurements are valid means for comparing the performance gains, because the inter-VID
communication overhead can be determined and subsequently excluded.

As stated earlier, this analysis involved the NESIM and one to three PEs. It was performed
to determine which AF, AFO, and AF-FTPP Interface procedures could be improved. A
complete list of the resultant measurements is presented along with a description of the
proccdurés instrumented in Appendix C.

4.2 Enhancements in the AF and AFOs

The preliminary performance measurements were analyzed to determine where the majority
of the time is being spent. This initial examination addressed the main "bottlenecks” and
"time sinks" rather than comprehensively itemize the areas that need optimization.

Three major inefficiencies were identified during this evaluation:

1.  The port_num procedure, which locates a port entry in the port table based on
the port name, was needlessly called during each execution of the AFO
priming and transfer functions. :

2. The AFO priming function unnecessarily checks all of the input ports each
time it is called. If one port does not have a message, then the AFQO is not
primed and the other ports do not have to be checked.

3. The AF spends a large portion of time determining the next AFO to execute.

Each inefficiency was examined, and a corresponding enhancement was designed and
implemented. Specifically,

1. The EFG to AFO translator and AF preprocessor were modified to
incorporate AFQ initialization procedures. During the AF startup process, an

initialization procedure is invoked for each AFO in the application. These
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procedures use the por:_num function to determine the appropriate port
identifiers (IDs). These port IDs are recorded in variables that are visible to
the priming and transfer functions. Since the port ID assignments are
performed during the initialization process rather than during the steady-state
execution of the AF, the time required to execute the priming and transfer
functions is substantially reduced.

2. The EFG to AFO translator was modified to use the Ada "and then" construct
in the priming conditions (for AFO priming functions involving multiple
conditions). As a result, the number of port checks is minimized.

3. The "polling” scheduler used in the AF was replaced with a message driven
scheduler. Consequently, the overhead required to determine the next AFO to
execute is greatly reduced.

The performance measurements of the enhanced AF and AFOs used the Network Element
Simulator and timed 40 procedures. In addition to the 38 intervals recorded in Section 4.1,
this analysis measured the AFO initialization time and the steady-state execution time (see
Section 4.3 for the boundaries for these intervals). As before, this examination involved
one, two, and three PEs. This analysis was performed to determine the performance gains
that were attained by incorporating the previous modifications.

As discussed in Section 4.1, the communication overhead due to the NESIM is significant.
Nevertheless, these measurements can be used to approximate the performance gains
attained by incorporating our enhancements, because this overhead was determined and
extracted. Consequently, after the AF was optimized, its performance increased by 258,
293, and 209 percent for one, two, and three PEs, respectively (illustrated in Figure 31).

Like the preliminary measurements in Section 4.1, a complete list of the measurements
recorded during this analysis is presented in Appendix C.
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Figure 31 - Execution Times Required by the AF Versions

4.3 Performance of the Event Diagnosis Expert

The Event Diagnosis Expert was executed on one to thirteen simplex VIDs. Three times
were recorded, specifically: (1) the time necessary to initialize the Ada AF, AFOs, and AF-
FTPP Interface, (2) the time from the completion of the initialization process to the end of
the AFOs execution, and (3) the total time required to execute the Event Diagnosis Expert.
The first timing essentially measures the overhead required to create the AFOs (the af_run
procedure) and to send the necessary set of initialization messages. The second timing
starts when the scheduler first checks for a primed AFO and concludes when the
System_Output AFO has successfully processed its last message. This interval is referred
t0 as the steady-state time. Finally, the third measurement is the sum of (1) and (2).
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1 775 553 1328
2 766 374 1140
3 766 299 1065
4 766 261 1027
5 654 273 927
6 654 252 - 906
7 750 224 974
8 766 213 979
9 654 241 895
10 702 233 935
11 638 241 879
12 638 256 .- 894
13 718 218 936

-

Table 3 - Performance of the Event Diagnosis Expert Utilizing the Load
Balancer .

The performance metrics obtained during this analysis are presented in Table 3. The AFO
to VID mapping for this test was generated using the load balancer. As stated earlier, the
load balancer determines the distribution by minimizing the inter-VID connectivity. By
examining Table 3, it can be seen that, as expected, the initialization times remain relatively
constant. These times fluctuate slightly, because the AFO to VID distributions differ and
the timing facility has a granularity of 16 milliseconds. Converséiy, the steady-state times
noticeably vary since the work is distributed to multiple processors. Further, these times
are not monotonic, because the load balancer typically generates a sub-optimal distribution.
For instance, the time required to execute the Event Diagnosis Expert increases when
shifting from four to five VIDs. This occurs because the load balancer's distribution for
four VIDs is better than that for five VIDs.

The speedup attained by distributing the workload is presented in Table 4. These numbers
represent the speedup of the steady-state execution time. The AF initialization time was
ignored in the speedup calculation, because the steady-state time will typically dominate the
execution time in a real application (the initialization process is only performed once
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Table 4 - Steady-State Speedup for the Event Diagnosis Expert

whereas the Event Diagnosis Expert AFOs will be executed many times over the course of
a mission). It can be seen in Table 4 that the maximum speedup achieved is 2.60. This
speedup results when the load of the system is allocated to 8 VIDs.

The speedup of the Event Diagnosis Expert is graphed in Figure 32. Additionally, in
Figure 33, a monotonic logarithmic curve fit is superimposed over the speedup plot to
illustrate that the speedup curve approaches a plateau. The speedup eventually stabilizes,
because the ap'plication's synchronization dependencies counteract the additional
throughput capability.

In general, the speedup that was attained is relatively small. Nevertheless, such a speedup
was expected after considering the Event Diagnosis application. A minimal speedup was
speculated, because it is nearly impossible to achieve a s*gnificant speedup when: an
application involves such a small number of tasks (13), the computational load of each task
is approxiniately equal to the time required to schedule a task, and one of the primary tasks
is a bottleneck (System_Ouwput AFO). ’
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Figure 33 - Steady-State Speedup with Logarithmic Approximation
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With respect to the distribution of an intelligent system, speedup is not the only concern. ..
Another important issue is the effect that parallelization has on the output of the system.
This issue was examined when hosting the Event Diagnosis Expert on the FTPP. When
executed on a single processor, the Expert had a deterministic output. Alternatively, when
parallelized, the output became non-deterministic and typically varied with the number of
processors used. However, since output ordering constraints were not provided, each
output sequence was deemed correct.

4.4 Performance of the Event Diagnosis Expert with Simulated
Computational Load

As discussed earlier, the increase in the performance of the Event Diagnosis Expert that
was attained by employing multiple processors of the FI'?P was unimpressive. We
speculated that this resultant speedup would be minimal, par‘tlj/ because the computational
load of each AFO is small. Accordingly, we attempted to verify its thcory by giving each
AFOQ a uniform computational load.

The 68881 floating point multiplier on each PE was used to simulate an AFO computational
load. Specifically, each AFO, except the System_Output, was modified to execute a series
of floating point instructions prior to its execution. The number of instructions was varied
to differ the size of the load. A computational load was not added to the System_Ouipus
AFO in an attempt to reduce its bottleneck effect (which is currently inherent to the
application). The load balancer was used to generate an AFO to VID distribution, and the
"loaded” Event Diagnosis Expert was executed on one to thirteen PEs.

The AFOs were given uniform loads of 32 ms., 70 ms., and 150 ms. As speculated, the
resultant speedup of the Event Diagnosis Expert improved as the computational load of the
AFOs was increased. For example, when the Expert was allocated to ten VIDs, the
speedup was 2.37, 3.24, 4.03, and 4.91 for the 0 ms., 32 ms., 70 ms., and 150 ms. loads
respectively. A complete list of the resultant performance measurements is provided in
Tables S through 8. Further, a comparison of the speedup attained through distributing the
application is presented in Table 9 and illustrated in Figure 34.

61



II ! E:E E I . l- v : ] S ’ -S : ] I ‘]_E . [ ] -

1 775 553 1328
2 766 374 1140
3 766 299 1065
4 766 261 1027
5 654 273 927
6 654 252 . 906
7 750 224 974
8 766 213 979
9 654 241 895
10 702 233 935
11 638 241 879
12 638 256 .- 894
13 718 218 936

Table 5 - Performance of the Event Diagnosis Expert“

Steady-State(ms)  Total Execution(ms)

E
E

1 775 916 1691
2 750 534 1284
3 750 : 411 1161
4 766 337 1103
3 638 355 o 993
6 638 321 959
7 750 272 1022
8 750 275 1025
9 654 301 955
10 686 283 969
11 654 275 929
12 654 289 943

13 702 256 958

‘Table 6 - Performance of the Event Diagnosis Expert
Additional Load per AFO = 32 ms.
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E

1 775 1401 2176
2 750 758 1508
3 750 603 1353
4 750 531 1281
5 654 487 1141
6 654 409 . 1063
7 766 371 1137
8 750 346 1096
9 654 376 1030

10 686 348 1034
11 654 361 1015
12 638 348 986
13

702 297 999

Table 7 - Performance of the Event Diagnosis Experf‘
Additional Load per AFO = 70 ms.

Number of VID Initalization(ms)  Steady-State(ms) Total Execution(ms:

1 775 2377 3152
2 750 1174 1924
3 750 982 1732
4 750 862 1612
5 638 757 , 1395
6 638 604 ' 1242
7 750 587 1337
8 766 506 1272
9 638 537 1175
10 702 484 1186
11 638 476 1114
12 638 481 1119

702 368 1070

.
w

Table 8 - Performance of the Event Diagnosis Expert
Additional Load per AFO = 150 ms.
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Numberof VIDs ~ Speedup Speedup Speedup - Speedup
' NoExtraload Extra32ms. Exta70ms.

1 1 1 1 1
2 1.48 1.72 1.85 2.0
3 1.85 2.23 2.32 2.42
4 2.12 2.72 2.64 2.76
5 2.03 2.58 2.88 3.14
6 2.19 2.86 © 343 3.94
7 2.47 3.37 3.78 4.05
8 2.60 3.33 4.05 4.70
9 2.29 3.04 3.73 4.43
.10 2.37 3.24 4.03 491
11 2.29 3.33 -~ 3.88 4.99
12 2.16 3.17 - 4.03 4.94
13 2.56 3.58 . 4.72 6.46

Table 9 - Steady-State Speedup for the Event Diagnosis Expert
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Figure 34 - Speedup Comparison for Differing Loads
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1 775 2377 3152
2 750 1174 1924
3 750 982 1732
4 750 862 1612
5 638 757 1395
6 638 604 1242

Table 10 - Performance of the Event Diagnosis Expert
Additional Load per AFO = 150 ms.
Distributed via Load Balancer

The results of this loading analysis implies that the performance of a parallelized AFO suite
will improve if each AFO represents multiple rules rather than only a single rule.
Accordingly, it is CSDL's belief that methods by which multiple rules can be grouped and
characterized using one AFO should be explored. e

4.5 Performance of the Event Diagnosis Expert Using a Hand Generated
Distribution

As discussed in Section 2.6, the AFO to VID distribution generated by the load balancer is
sub-optimal. This implies that considerations other than connectivity should incorporated
into the load allocation algorithm. To support this speculation, a set of mappings were
constructed by hand utilizing knowledge of: (1) the connectivity, (2) the Event Diagnosis
Expert application, and (3) the implementation of the Activation Framework. The Event
Diagnosis Expert was executed on one to six VIDs using these hand coded mappings.

The performance of the Event Diagnosis Expert, augmented to include a 150 ms. simulated
load and utilizing ‘the load balancer, is shown in Table 10. The 150 ms. load was
arbitrarily selected for this illustration. The resultant execution times for this application
using the hand coded distribution is presented in Table 11, and a comparison of the steady-
state speedup is given in Table 12 and Figure 35. It can be seen that, regardless of the
number of VIDs, the performance of the Expert using the hand coded distributions is equal
to or better than that employing the automated mapping. In conclusion, this evaluation
implies that an AFO to processor allocation algorithm based solely minimizing the inter-
processor traffic will typically generate a sub-optimal distribution.
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Number of VIDs Initalization(ms)  Steady-State(ms) Total Execution(ms)

1 775 2377 3152
2 750 1174 1924
3 750 846 1596
4 638 731 1369
5 638 544 1182
6 654 527 1181

Table 11 - Performance of the Event Diagnosis Expert
Additional Load per AFO = 150 ms.
Distributed via Hand Calculation

Number of VIDs Speedup Speedup
Load Balancer Hand Calculation

1 1 1

2 2.0 2.0

3 2.42 2.81

4 2.76 3.25

5 3.14 4.37

6 3.94 4.51

Table 12 - Load Balancer vs. Hand Calculation Speedup
Comparison
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Figure 35 - Load Balancer vs. Hand Distribution
Speedup Comparison

4.6 Performance of the Event Diagnosis Expert Using the Dependency
Load Balancer

The automatic load balancing algorithm discussed until now is based on minimizing the
inter-VID connéctivity. As concluded in Section 4.5, this method usually generates sub-
optimal AFO to VID allacation. In an attempt to improve.the automatic load distribution
mechanism, an allocation methodology founded on the AFO priming conditons was
designed. To distinguish between these two distribution.algorithms in the following
discussion, this new mapping utility will be termed the "dependency load balancer”,
whereas the distribution algorithm described in Section 2.6 will be referred to as *he
"connectivity load balancer”.
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Figure 36 - The Event Diagnosis Expert

One of the limitations of the connectivity load balancer is that it does not consider the AFO
priming conditions. Since an AFO's priming conditions must be fulfilled before it can be
executed, these prerequisites should be considered when determining an AFO to VID
allocation. To examine how useful the priming conditions are for selecting an allocation
scheme, we developed the "dependency based” load balancer. This balancer derives its
AFO to VID mapping solely from the AFO priming conditions. To give an example of
how this method works, we consider the a_pilot_aware AFO of the Event Diagnosis Expert
(illustrated in Figure 36). This AFO's priming conditions require that, prior to it being
scheduled, it receive a message from the following AFOs: eq_mode_health,
pilot_not_busy, and health. Accordingly, it can only execute after the latter AFOs have
completed. The dependency load balancer uses the AF frame file to determine the AFO
priming conditions, and then it establishes an AFO "execution order”. An AFO execution
order is a chronological/dependency ordering that indicates which AFOs must execute
before other AFOs can be scheduled. This ordering is segmented into iterations (or steps),
and it allows the load balancer to calculate which AFOs can be executed at a particular time
and which AFOs can be scheduled simultaneously;
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An outline of aforementioned algorithm is as follows:

D
2)
3

4)

5)

6)

7

8)

The frame file is parsed to determine the AFO interconnections.

A dependency matrix is constructed to depict the AFO priming conditions.

The "external input" AFOs (described in Section 2.2) are located and executed
during execution iteration #1.

Given that the external input AFOs have completed execution, the dependency
matrix is examined to determine the AFOs whose priming conditions have been
met. These AFOs are scheduled during execution iteration #2.

Given that the external input AFOs and the AFOs of step 4 have completed, the
dependency matrix is again parsed to determine the AFOs that can be executed.
These AFOs are fired during execution iteration #3. N

Step 5 is performed until all of the AFOs have completed execution. During each
repetition of this step, the AFOs that were executed are recorded. After all AFOs
have been fired, the execution order is known. The execution order is designed
such that all AFOs in the same execution iteration are capable of being fired
simultaneously.

Each iteration of the execution order is parsed, and all AFOs in that iteration are
allocated to different VIDs (if the required number of VIDs is available) to permit
their parallel execution.

Step 7 is repeated until all AFOs have been assigned of a VID.

To illustrate the algorithm, we examine the Event Diagnosis Expert. Using the dependency
algorithm, the following execution order is generated:

Iteration #1 - eq_mode_health, pilot_not_busy, health, jtids can

be executed, because they are the external input AFOs.

Iteration #2 - a_previous_waypoint, a_unaided_sol, a_ecm_env,

a_pilot_aware, a_alpha_check, a_lead_map_error,
a_wm_map_error, a_eo_radar_des can be executed,
because their priming conditions have been fulfilled
by the execution of the external input AFOs.

Iteration #3 -  system_ousput can be executed, because its priming

conditions have been fulfilled by the execution of the
AFOs in Iteration #2.
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Since the AFOs executed auring the same iteration can be executed in [;arallel, they are -:
allocated to different VIDs. For instance, given that four VIDs are available to execute the
Event Diagnosis Expert, then the dependency load balancer would generate the following
AFO to VID mapping:

VID 1 - eq_mode_healith, a_previous_waypoint, a_alpha_check, system_output.
VID 2 - pilot_not_busy, a_unaided_sol, a_lead_map_error.

VID 3 - health, a_ecm_env, a_wm_map_error.

VID 4 - jrids, a_pilot_aware, a_eo_radar_des.

As a result of the allocation, each of the four VIDs is completely utilized (if the AFO loads
are assumed to be uniform). Specifically,

eq_mode_health, pilot_not_busy, health, and jtids will be executed first and

simultaneously. B ,_

- a _previous_waypoint, a_hndided_sol, a_ecm_env, a_pilot_aware will be executed
second and simultaneously.

- a_alpha_check, a_lead_map_error,a_wm_map_error, and a_eo_radar_des will be
executed third and simultaneously.

- system_output will be executed last.

The dependency load balancer was employed to generate AFO to VID mappings for the
Event Diagnosis Expert for one to thirteen VIDs. Subsequently, the resultant load modules
were executed and performance metrics were obtained. These results are presented in
Tables 13 and 14, Further, they are illustrated in Figures 37 and 38.

A comparison of the speedup achieved using the connectivity load balancer with that
attained utilizing the dependency load balancer is illustrated in Table 15 and Figure 39. As
expected the performance of the dependency based algorithm was, in general, better than
that of the connectivity method. Accordingly, this analysis indicates that the AFO priming
conditions are a more important facto for determining the allocation scheme than the inter-
VID connectivity. Nevertheless, both allocations methodologies are sub-optimal. As
depicted in Figure 39, neither algorithm was consistently better than other. As a result, it
appears that multiple factors should be considered when determining the AFO to VID
mapping.
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Number of VIDs
1 775 553 1328
2 763 305 1068
3 763 315 1078
4 748 , 227 975
5 766 277 1043
6 764 235 . 999
7 638 246 884
8 766 203 969
9 750 221 971
10 766 219 985
11 638 252 890
12 748 207 . 955

13 702 230 932

Table 13 - Performance of the Event Diagnosis Expert Utiliz'ing the
Dependency Load Balancer
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1
1.81
1.76
2.44
20
2.35
2.25
2.72
2.50
2.53
2.19
2.67
13 . 2.40
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Table 14 - Steady-State Speedup for the Event Diagnosis Expert
Distribution via Dependency Load Balancer
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Figure 37 - Steady State Speedup using the Dependenc); Load Balancer
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Figure 38 - Steady State Speedup with Logarithmic Approximation
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E

Speedup Connecrivity ~ Speedup Dependency
Load Balancer Load Balancer
1 1 1
2 1.48 1.81
3 1.85 1.76
4 2.12 2.44
5 2.03 - 2.0
6 2.19 2.35
7 2.47 2.25
8 2.60 2.72
9 2.29 2.50
10 2.37 . 2.53
11 2.29 219
12 2.16 . 2.67
13 2.56 C 240

Table 15 - Connectivity Load Balancer vs. Dependency. Load Balancer
Speedup Comparison i
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Figure 39 - Connectivity Load Balancer vs. Dependency Load Balancer
Speedup Comparison

4.7 Distributil'l’g the Work Load of the System Output AFO

The previous analyées have incorporated several allocation schemes: an intuitive hand
generated mapping, an automated allocation based on minimizing inter-VID connectivity,
and an automated distribution based on maximizing parallelism. However, in each method,
the computational load of the System Output AFO was allocated to only one VID
(centralized allocation of the Output AFO). The analysis conducted in this Section
examines the advantages of distributing the work load of this AFO.
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" VID # VID #2

Figure 40 - Centralized Distribution of the System Output AFO

An example of a centralized allocation of the System Qutput AFO is depicted in Figure 40.
The AFOs that comprise the Event Diagnosis Expert are mapped onto two VIDs, and the
System Output AFO is assigned to one of the VIDs. The distributed System Output
scheme is illustrated in Figures 41 and 42. This method reduces the work load of the
System Output AFO by allocating its load over multiple VIDs. For example, when two
VIDs are available, two instances of the System Output AFO are employed, one per VID.
Each Event Diagnosis Expert AFO sends its output messages to the local instance rather
than to a centralized System Output AFO. As a result, the computational load, and
accordingly the bottleneck effect, of the System Output AFO is minimized.
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viD #1 vID #2 vIiD #3

eq_mode
heaith

Figure 42 - Distributed Allocation of the System Output AFO - 3 VIDs
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1 775 553 1328
2 763 386 1149
3 763 277 1040
4 748 194 942
5 766 218 984
6 764 179 943
7 638 163 801
8 766 163 929
9 750 164 914
10 766 163 929
11 638 153 791
12 748 155 903

13 702 153 855

Table 16 - Performance of the Event Diagnosis Expert Utilizing the
Dependency Load Balancer and Distributed System Output

The AF-FTPP Interface and the dependency load balancer were augmented to allocate local
instances of the System Output AFO. Further, the dependency load balancer was
employed to generate AFO to VID mappings for the Event Diagnosis Expert for one to
thirteen VIDs. Subsequently, the resultant load modules were executed and the
performance of the application was recorded. These metrics are presented in Tables 16 and
17. Further, the speedup is illustrated in Figure 43.

A comparison of the speedup achieved using the centralized allocation of the System Output
AFO with that attained utilizing the distributed method is illustrated in Table 18 and Figure
44. As expected, the performance of the distributed algorithm was significantly better than
that of the centralized method. Accordingly, this analysis indicates that the use of a
centralized output AFO will constrain the performance of a parallelized application.
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Table 17 - Steady-State Speedup - Distributed System Oiliput '
Allocation via Dependency Load Balancer
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Figure 43 - Steady-State Speedup Using the Dependency Load Balancer and
a Distributed Output Process
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Numberof VIDs S Centralized ~ Speedup Distribused
LD Syl et S 2%
1 1 1
2 1.81 1.43
3 1.76 2.0
4 244 2.85
5 2.0 2.54
6 2.35 - 3.09
7 2.25 3.39
8 2.72 3.39
9 2.50 3.37
10 2.53 3.39
11 2.19 361
12 2.67 - 3.57
13 2.40 . 361

Table 18 - Centralized Output vs. Distributed Output“
Speedup Comparison
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Figure 44 - Centralized Output vs. Distributed Qutput Speedup
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4.8 Performance of 't"he Real-Time Controller

The Real Time Controller task suite was executed on one to 15 simplex VIDs using both
the connectivity-based load balancing scheme and the dependency-based load balancing
scheme. The seven "external input AFOs" (that is, mis056, nodel, main78, fig058,
amvrat, mail00, and main80) were primed by invoking a procedure which sent messages
to each of these AFOs. All terminating nodes transmitted a message to the system_output
AFO (see Figure 15). Furthermore, to parallel the analysis of the Event Diagnosis Expert
the computational load applied to each AFO was varied from a no load state to a uniform
150 ms load. Similarly, three times were recorded: (1) the initialization time, (2) the
steady state time, and (3) the total time. Tables 19 through 22 present the results of these
measurements.

II ! E:E I 3% ]n . : ] S i -S' : ‘:“ I ']E - n: :

1 3551 3916 7482
2 3327 3050 - 6376
3 3903 2530 6433
4 3919 2365 6283
5 3903 2253 6156
6 3821 1940 5761
7 3903 2038 5940
8 3903 2122 6025
9 3343 2130 5473
10 3327 1917 N 5244
11 3919 1884 5803
12 3343 1965 5308
13 3327 2015 5341
14 3343 1740 5083
15 3247 1831 5078

Table 19 - Performance of the Real Time Controller Task Suite
Utilizing the Connectivity Load Balancer
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1 3551 8524 12074
2 3343 6485 9828
3 3903 3987 7889
4 3919 3520 7422
5 3903 3212 7114
6 3821 2663 6484
7 3903 2681 - 6582
8 3919 3024 6943
9 3343 2688 6029
10 3327 2461 5786
11 3919 2602 6521
12 3327 2583 c 5909
13 3343 2718 - 6059
14 3343 2408 5 . 5750
15 3247 2394 5640

Table 20 - Performance of the Real Time Controller Task Suite
Utilizing the Connectivity Load Balancer with Computational Load

Number of VID - Initialization(ms’ Steady-State(ms Total Execution(ms

1 3551 3916 7482
2 3247 2774 6020
3 3791 2477 6268
4 3727 1665 5391
5 3247 2286 5533
6 3791 2079 . 5868
7 3727 1558 5284
8 3711 1572 5283
9 3807 1910 5716
10 3791 1849 5638
11 3247 2034 5281
12 3247 2010 5256
13 3807 1822 5628
14 3711 1603 5313
15 3247 1952 5198

Table 21 - Performance of the Real Time Controller Task Suite
Utilizing the Dependency Load Balancer
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1 3551 8524 12074
2 3247 4947 8193
3 3791 3951 7741
4 3711 2317 6027
5 3247 3127 . 6373
6 3791 2801 . 6591
7 3727 2067 5794
8 3727 1994 5721
9 3807 2380 6187
10 3791 2276 6066
11 3247 2538 ] 5800
12 3247 2456 E 5701
13 3807 2201 _ 6006
14 3727 2007 X 5733
15 3247 2349 5595

Table 22 - Performance of the Real Time Controller Task Suite
Utilizing the Dependency Load Balancer with Computational Load

The performance analysis for the Real Time Controller closely parallels the evaluation of
the Event Diagnosis Expert described in Section 4.3. The initialization times were
relatively constant despite the AFO to VID mappings. The computations for speedup were
based upon the steady state times and reflect the increase in performance relative to the
situation where a single processor executes the entire AFO suite. Maximum speedup
values of 2.25 using the connectivity load balancer and of 2.51 using the dependency load
balancer were attained when the AFOs (without an additional computational load) were
allocated to multiple VIDs. These performance values are rather modest and are
comparable to those of the Event Diagnosis Expert. When each AFO was given a constant
150 ms computational load, the speedup characteristics of this task suite improved
substantially, reaching maximum speedup values of 3.56 and 4.28 for the connectivity and
dependency load balancers, respectively. Tables 23 and 24 represent the speedup for the
two load balancing strategies; Figures 45 and 46 graphically depict the ¢peedup. In
general, the dependency load balancing strategy provided marginally better AFO to VID
allocations than the connectivity load balancing scheme, resulting in greater performance as
depicted in Figure 47. '
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Number of VIDs  Speedup Speedup -
1 1.00 1.00
2 1.28 1.31
3 1.55 2.14
4 1.66 2.42
5 1.74 2.65
6 2.02 - 3.20
7 1.92 3.18
8 1.85 2.82
9 1.84 3.17
10 2.04 3.46
11 2.08 3.8
12 1.99 330
13 1.94 314
14 2.25 . 3.54
15 2.13 3.56

Table 23 - Steady-State Speedup for the Real Time Controller Task Suite
Utilizing the Connectivity Load Balancer
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Figure 45. Speedup Comparisons for the Real Time Controller Task Suite
Utilizing the Connectivity Load Balancer
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Number of VIDs  Speedup Speedup -
' No Extra Load Extra 150 ms.
1 1.00 1.00
2 1.41 1.72
3 1.58 2.16
4 2.35 3.68
5 1.71 2.73
6 1.88 - 3.04
7 2.51 4.12
8 2.49 4.28
9 2.05 3.58
10 2.12 3.74
11 1.92 . 3.36
12 1.95 . 3.47
13 2.15 . 3.87.
14 2.4 4.25
15 2.01 3.63

Table 24 - Steady-State Speedup for the Real Time Controller Task Suite
Utilizing the Dependency Load Balancer
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Figure 46. Speedup Comparisons for the Real Time Controller Task Suite
Utilizing the Dependency Load Balancer '

84



4 -
3.:
Speed Up 21 @ :::2:\::
1 -
0 . L T B M e B WA AN LI S B M B

L v v i
01t 23 4586 7 8 9101112131415

Number of Processors

Figure 47 - Connectivity Load Balancer vs. Depe‘hdency Load Balancer
Speedup Comparison )

One of the goals of the application of AF methodology to the Real Time Controller task
suite was to stress the computational and memory management resources of the FTPP. In
the computations arena, it was desirable to determine how well the FTPP performed when
a single VID was assigned the entire computation load as well as when the suite of 15 VIDs
shared this load. Not surprisingly, the FTPP survived quite well in both cases. However,
" it is somewhat astonishing that approximately 7 seconds were required to execute the series
of 57 computationally unloaded AFOs when all were allocated to a single VID and that
when the AFOs were shared among 15 VIDs the total execution time on a single VID was
still a lofty 5 seconds. Of course, in both situations the initialization time was significant.
Yet even with initialization time excluded, the steady state imes were almost 4 seconds and
2 seconds for the single VID and the 15 VID cases respectively. (Refer to the bold values
in Tables 19 and 21). In an effort to identify the time sinks, the procedure timings were
collected as described previously in Section 4.1. These timings were collected in two
cases: (1) all 57 AFOs were assigned to a single VID and (2) the 57 AFOs were distributed
among 15 VIDs. Although ail procedure timings were measured, some routines were
particularly noteworthy because they either required a significant amount of time or were
invoked numerous times. Table 25 indicates the procedure times for the single VID case.
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tsk_loop
port_num
af_go
af_exec
exec_afo

391
261
12375
718
75
134

1

75

74

0.53
1.77
0.39
0.31
26.70
16.38
3536
1.45
16.74

208
464
4816
224
2003
2195
3536
109
1239

Tablé' 25 - Procedure timing for the Real Time Controller Suite (1 VID)

When the 57 tasks were allocated among the 15 VIDs, smular data were collected.
However, these values were collected on a single VID, spec1ﬁcally the VID that hosted the

system_output AFO. Table 26 presents these results.

Procedure MMMMM

malloc
lwrite
lread
lrewrite
tsk_loop
port_num
af_go
af_exec
exec_afo

345
203
8242
149
23
134
1
236
21

0.70
2.36
0.32
0.64
22.61
15.95
3232
3.08
8.

240
480
2640
96
520
2003
3232
728
168

Table 26 - Procedure timing for the Real Time Controller Suite (15 VIDs)

These results identify areas which are possibly candidates for optimization because of the
aggregate amount of time necessary for execution of any particular procedure. A couple of

inefficiencies are known:

1.  The tsk_loop is a procedure which is executed prior to execution of the AFO

task and which returns the primed AFO with the largest importance.
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However, because the searching mechanism checks the priming conditions of .
all AFOs even though only a subset of all AFOs is active on any particular
VID, tsk_loop requires a substantial time expenditure per invocation.

2. Although the execution time for each call to Iread is not substantial, the
number of calls warrants investigations into the efficiency of that routine and
into the frequency of its use. It is a List Management System procedure
which returns an object associated with a node by scanning a linked list in
search of the requested object.

3. The af_go procedure initializes the AF, all the AFOs and the port tables.
Although it is an initialization function and, consequently, not of primary
concern for optimization of steady-state functions, time savings would be
reaped in initializing only those AFOs which execute on any particular VID.

The Real Time Controller task suite did exercise the mcmor}{ management policies in the
AF-FTPP system. In fact, the incorporation of this 57 AFO-suite abruptly identified the
bounds. In the AF-FTPP system there are three memory managemént strategies
corresponding to each memory classification:

1. program code (includes FTPP Operating System, AF, AFOs and global
variables)
task stack space

3. heap space

The sizes of these memory areas are fixed at link time. The size of the program code is
obviously not dynamic, and it resides at an address specified at link ime. The task stack
area is fixed in size even at the task level; that is, each task’s stack is allocated at an address
specified at run time. Consequently, the heap size is also fixed but characteristic of heaps,
blocks are allocated at run-time upon request. The size of the program code and the task
stack space are functions of the number of tasks; the amount of heap space is determined
by the residual memory.

The initial attempts to execute the 57 task suite failed because of memory constraints. In
one case, the heap space was exhausted even before initialization was complete. This
problem was resolved by decreasing the size of each task stack to a mere 2560 bytes. The
selection of this value precluded the use of debugging facilities because of the lack of stack
space. It is obvious that the task stack space is severely limited in this test case in which
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the AFOs perform no real function. In fact, the current system (that is, AF-FTPP .
Operating System and processor hardware) cannot accept an application consisting of
numerous AFOs which require significant allocation of local variables.

4.9 Performance of the Real-Time Controller with Distributed Output

The previous analyses of the real-time controller may be tainted by the fact that a single
system_output AFO is invoked 18 times on the VID from which the data was collected.
This increases the computational burden on this VID in addition to the other AFOs which
have been allocated to that particular VID. The timing data includes this additional
overhead which certainly is not representative of the majority of VIDs. In order to
normalize these factors, the functionality of the system_output AFO was distributed among
the VIDs such that each VID invokes a local system_output rather than sending a message
to a remote system_output AFO. This concept is described in Section 4.7 in detail.

An experiment using a 15 VID distribution and the dependency load balancer generated a
maximum steady-state execution time of 849 ms. This is considerably lower than the 1952
ms (see Table 21) measured when there was a single system_output AFO. The computed
speedup is 4.61 which is essentially a 130% increase in performance. Figure 48 depicts
these results. It can be seen that funnelling all output through a single system_output AFO
is truly a major bottleneck.

3000 -
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1000
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Figure 48 - Execution times of the Real Time Controller Task
Suite with Single system_output vs. Distributed system_output

4.10 Improving the Activation Framework Scheduler
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As discussed in Section 2.2, all AFOs are initialized on all VIDs regardless of the AFO to

VID distribution. This method was incorporated because at the time that these analyses
were performed, only homogeneous load modules could be downloaded to the FTPP.
However, this approach is inefficient because the initialization of all AFOs increases the
FTPP memory requirements and reduces the available FTPP throughput. The memory
requirements are increased, because the initialization of each AFO involves a task creation
and the allocation of a corresponding task stack. Since AFOs are initialized on each VID
but are invoked on only one, many AFO tasks are needlessly created. Furthermore, the
initialization .of all AFOs on all VIDs decreases the performance of a parallelized
application, because the time required to search the AFO lists increases (since the data
stmcturés; for both the local and remote AFOs are stored in these lists). For instance, when
the AF decides the next AFO to schedule, each AFO is extracted from the AFO list and
queried to determine if it is primed. Since this list mneccssaﬁiy includes the remote AFOs,
the time required to search this list is longer than if the list only contained the local AFOs.

In this analysis, the AF-FTPP scheduler was improved by determining whether or not an
AFO resides on the VID before parsing the associated list. It was speculated that this
improvement would streamline the scheduling decision and increase the performance of the
application.

4.10.1 Impact on the Event Diagnosis Expert

The dependency load balancer was employed to generate AFO to VID mappings for the
Event Diagnosis Expert for one to thirteen VIDs. Additionally, the distributed System
Output AFO scheme was utlized. Subsequently, the performance metrics were obtained.
These measurements are presented in Tables 27 and 28. Further, the speedup is illustrated
in Figure 49.

A comparison of the speedup-achieved using the unenhanced scheduler with that attained

using the improved scheduler is illustrated in Table 29 and Figure 50. As expected, the
performance of the Expert improved using the enhanced algorithm.
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1 775 553 1328
2 763 352 1115
3 763 238 1001
4 748 184 932
5 766 194 960
6 764 157 - 921
7 638 136 774
8 766 136 902
9 750 137 887
10 766 136 902
1 638 146 784
12 748 144 892

13 702 145 847

Table 27 . ?erf&rmanée of the Event Dia'g'ndsis Expert Utilizing the
Dependency Load Balancer, Distributed System Output, and
Improved AF-FTPP Scheduler :

E
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1
1.57
2.32
3.01
2.85
3.52
4.07
4.07
4.04
4.07
3.79
3.84
13 3.81
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Table 28 - Steady-State Speedup - Distributed System Output, Dependency
Load Balancer, and Improved AF-FTPP Scheduler
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Figure 49 - Steady-State Speedup Using the Dependenci' Load Balancer,
a Distributed Output Process, and an Improved Scheduler
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Numberof VIDs  Speedup Distributed Speedup Distributed Output &

' Qutput Improved Scheduler
1 1 1

2 1.43 1.57

3 2.0 2.32

4 2.85 3.01

5 2.54 2.85

6 3.09 : 3.52

7 3.39 4.07

8 3.39 4.07

9 3.37 4.04

10 3.39 4.07

11 3.61 : 3.79

12 3.57 E 3.84

13 3.61 3.81

Table 29 - Speedup - Distributed Qutput vs. Distributed
Output with Improved Scheduler
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Figure 50 - Distributed Output vs. Distributed Output with Improved
Scheduler
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4.10.2 Impact on the Real-Time Controller

Since the scheduler improvements were incorporated to eliminate the unnecessary checking
the priming conditions of AFOs which are not resident on a particular VID, the Real Time
controller application was executed with this optimization. The procedure timings similar
to those of Table 26 were collected to identify the performance improvements for the case
when the 57 AFOs are distributed among 15 VIDs. These results are presented in Table
30. A comparison of these results with those of Table 26 indicates a significant decrease in
the number of invocations of malloc, iwrite, Irewrite, and tsk_loop. Conversely, there was
a noticeable increase in the number of calls to af_exec presumably resulting from the
diminished execution time of the scheduling loop.

Procedure Num.of Calls Time/Call(ms) Total ime (ms)

malloc 316 0.61." 192
Iwrite 188 1.87 352
lread 6671 0.58 , 2512
Irewrite 86 0.56 ' 48
tsk_loop 11 4.36 48
port_num 134 14.28 1987
af_go 1 3232 3232
af_exec 492 2.29 1121
exec_afo 5 12.60 63

Table 30 - Procedure timing for Real-Time Controller Suite
with Improved Scheduler (15 VIDs)

In additon, the tota_l steady state execution time was 620 ms (versus 1952 ms in the

original case). It should be noted that these timing values reflect not only the improved
scheduler but also the effects of the distributed syszem_ousput. (Refer to Figure 51).
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Figure 51 - Execution times of the Real Time Controller Task
Suite with Single system_output vs. Distributed system_output vs.
Distributed system_output and Improved Scheduler ™

4.11 Performance Evaluation with Redundancy Management

In the analyses discussed previously the redundancy management capabilities of the FTPP
were ignored. Not only were all AFOs allocated to simplex virtual groups but the FTPP's
intrinsic redundancy management functions were inactive. Since one of the benefits of use
of this computer system is its fault tolerant aspects, it is highly desirable to evaluate the
FTPP-AF system with the redundancy managements functions.

Redundancy management requires the invocation of two additional functions. The
Reconfiguration function is required to initially configure the simplex processors as fault
masking groups which are capable of detecting faults. In addition, the Fault Detection and
Isolation function (FDI) must actively monitor the fault detection mechanisms in order to
protect the system from failure.

Because of the memory constraints encountered with the Real-Time Controller application
and because. both of the additional functions have rather ambitious stack requirements, the
Event Diagnosis Expert application was chosen to host this series of tests. This selection
permits the use of the larger task stack spaces required for the incorporation of these two
redundancy management functions.
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Since the goal of‘the test was to examine the impact of the redundancy management upon

the steady-state execution of the AFOs and since the reconfiguration is executed only upon
request, the reconfiguration of the system into four triplexes was completed prior to the test
initiation. On the other hand, FDI invocation is a periodic task which is invoked each
scheduling cycle concordant with the AFO scheduling mechanism. Consequently, the
timing data reflects only the invocation of the FDI redundancy management function.
Moreover, since no fault is present during the execution, the timing data reflects only the
minimal overhead for FDI. More aggressive tests were not conducted because the current
implementation is structured to execute the AFO suite only once. The AFOs were allocated
to these four triplexes by the dependency load balancer. In addition, the system_output
was distributed and the scheduler improvements discussed in Section 4.10 were in effect.

At the completion of the test each processor computed the steady-state execution time based
upon its local clock. Since these clocks are not synchroniz‘cﬁ, the clock values reported
even by members of a VID are not exact. In fact, they frequently differed By 1 or 2 clock
ticks (that is, 16 ms or 32 ms). The execution times stated are the averages of the times of
the members of the VID with the highest values for execution time.

Since this series of tests introduces the concept of redundant virtual groups, an initial test
was conducted to create a baseline for comparison purposes. This initial test reflects the
steady-state time for execution of the 13 AFOs on four triplexes without invoking FDL
This time was 207 ms. With execution of FDI periodically, the execution time became 254
ms. The overhead of FDI in this system of 13 computationally void AFOs is 18%.
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Figure 52 - Execution times of the Event Diagnosis Expert Task
Suite with and without FDI (no additional computﬁtional load per AFO)

Since the AFO suite is devoid of computational activity, a disproportionate c;omponent of
the execution time represents the operating system overhead. In an attempt to normalize
this factor, a 150 ms computational load was applied to each AFO (excluding the
system_output AFO). The steady-state execution time of 13 AFOs without FDI was 593
ms; the same test with FDI required 641 ms. FDI now accounts for 7% of the overhead.
Furthermore, in both sets of tests FDI required a fixed amount of time (that is, 47 ms).
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Figure 53 - Execution times of the Event Diagnosis Expert Task
Suite with and without FDI (150 ms additional computational load per
AFO)



5.0 Performance Improvements

The performance evaluation of the AF-FTPP system noted some glaring inefficiencies in
the AF-FTPP design particularly when the AFOs were distributed among multiple VIDs.
Furthermore, other areas which were not obviously inefficient could be optimized to
improve performance. The following recommendations would clearly achieve this goal:

1. The method currently employed to parallelize the AFOs across some number
of VIDs entails creating identical load modules for each VID and dynamically
invoking only those AFOs which have been assigned to any particular VID.
However, at initialization in order to create global information concerning the
existence and location of each AFOQ, all AFOs are created as active tasks and
initialized on each VID. This parallelization procedure is the source of gross
inefficiencies in terms of both computational utilization and memory
allocation. A far better approach would entail the activation of only those
AFO tasks which actually reside on a VID. This method would reap great
savings in memory allocation. The creation of the global AFO information
could be achieved in one of two ways: (1) the global information could be
amassed statically during the load balancing stage and furnished to the AF
during initialization without actual initialization of the non-resident AFOs or
(2) a temporary task could be created strictly for the initialization of non-
resident AFOs. 7

2. The Activation Framework is structured upon the List Management System
which performs list manipulation functions. Although these mechanisms are
extremely versatile and provide dynamicism in terms of creation and deletion
of data structures they tend to be very costly in processing time because the
searching mechanisms are essentially sequential. Since the AF-FTPP invokes
LMS procedures (particularly /read) frequendy to retrieve global AFO status
information, significant benefit would be derived by incorporating a fast
searching mechanism such as a hashing function into at least the lread
procedure. Alternatively, if the characteristics of the desired application can

. be specified compromises may be agreed upon which maintain some of the

* important features of the AF while dispensing with some of the more costly
features. For example, if the application did not require dynamic instantiation
of AFOs many benefits could be evoked. The allocation of AFOs to VIDs
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would be established prior to link time with the static global knowledge of -
AFOs such as port numbers, VID numbers, and service IDs. This
improvement decreases initialization time in instantiating AFOs which will
not be executed on the particular VID, decreases search times of lists because
lists are shorter, and relieves the memory management crunch. On the other
hand, implementation of this type of scenario complicates the migration of
AFOs to other VIDs. (The entire topic of function migration has yet to be
addressed.)

It is obvious from the analysis of the Event Diagnosis Expert that both the
connectivity based load balancer and the dependency based load balancers are
sub-optimal. The connectivity load balancer has been compared directly with
a hand optimized distribution (Section 4.5) with' results favoring the hand
calculated version. Thus far, two metrics have affected the load balancing
strategy: (1) the connectivity load balancer éttempted to automatically
distribute the work load by minimizing the inter-VID connectivity and (2) the
dependency load balancer aimed at maximizing parallelism. A more
sophisticated load balancing scheme using both of these parameters would
hopefully create a workload distribution which is "more optimal” than either
of the strategies developed to date. This certainly would increase the overall
performance of the application.
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6.0 Conclusio_n

In brief, the following work was completed during Knowledge Representation into Ada
Parallel Processing contract:

1. The Activation Framework and Fault Tolerant Parailel Processor Operating
System were adapted to permit the execution of the Event Diagnosis Expert of
the Adaptive Tactical Navigator on the FTPP (Refer to Sections 2.2 - 2.4).

2. The AF and Event Diagnosis Expert were analyzed, a number of inefficiencies
were identified, and a corresponding set of improvements were incorporated
(Sections 4.1 and 4.2).

3.  The Event Diagnosis Expert was executed on multiple processors of the
FTPP, and the advantages and disadvantages of its parallel execution were
examined (Section 4.3). '

4. An AFO to VID mapping analysis was compiétcd. In this examination,
CSDL compared several mapping schemes. The results of this test were
utilized to upgrade the automatic distribution algorithm (Sections 4.5 and
4.6).

5. A computation loading analysis was performed. In this investigation, we
used artificial loads to examine the effect that more computationally intensive
AFOs would have on the parallel execution of the AF on the FTPP (Sections
4.4 and 4.7).

6. The AF methodology was employed to execute a computationally stressful
and memory-intensive AFO suite (that is, the real time controller) on the
multiple processors of the FTPP (Sections 4.8 - 4.10).

7. The Redundancy Management capabilities of the FTPP were incorporated into
the AF-FTPP Methodology and their overhead was measured (Section 4.11).

With respect to the aforementioned work, the following items are a summary of the results
that were attained and conclusions derived during the KRAPP project:

1. The Event Diagnosis Expert can be executed on the FTPP using the AF
. Methodology. ‘

2. The AF Methodology and AF-FTPP Interface can be enhanced to be more
efficient. As detailed in Section 4.2, we improved the performance of the
Event Diagnosis Expert by 258, 293, and 209 percent for one, two, and three
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processors respectively. Further improvements can be incorporated into the --
AF Methodology to optimize its sequential and parallel performance.

When utilizing the multiple processors of the FTPP and an CSDL developed
automatic load balancer, the speed of the Event Diagnosis was increased by a
factor of 4.07 (in this case, 7 processors were employed).

The AFO to VID mapping investigation indicated that multiple factors should
be considered when determining a distribution. Nonetheless, the
incorporation of several dissimilar factors, which is common and desirable,
makes the automatic load balancing algorithm considerably more complex.
The AFO computational loading analysis supported our speculation that the
performance of an application using the AF Methodology would improve if
the AFOs are more computationally intensive. This conclusion indicates that
the parallel execution of the AF Methodology will be more efficient if each
AFO represents multiple Homn Clauses rather than merely a single Clause.
The impetus to use the AF Methodology to execute a real time controller was
to demonstrate that the concept is scaleable and to better stress the capabilities
of the FTPP. This test showed that this Methodology can be used to execute
a more difficult application on the FTPP (57 AFOs rather than only 13) while
still attaining considerable performance speedup (6.32 when using an
automatic load balancer and 15 processors).

The FTPP's Fault Detection and Isolation process was incorporated in the
Event Diagnosis Expert (augmented with a 150 ms. computational load to
normalize the test) and decreased the performance of the application by only
seven percent.

The aforementioned work, results, and conclusions were discussed in detail in Section 4.

Refer to that section if more information is desired.

In addition, Section 5.0 detailed a number of known inefficiencies which should be
rectified to increase the performance of the AF-FTPP system. Briefly, these

recommendations include:

. .. Instantiated AFOs should be initialized only on those VIDs to which they have

been allocated.

The Activation Framework List Manégerﬁenf Systéfh broéedures should be
optimized wherever possible, particularly the lread function.
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3. A sophisticatcd load balancing scheme should be developed which maximizes
parallel execution of AFOs while minimizing inter-VID connectivity.

Based on the work completed and experience thus attained during the KRAPP project, we
believe that completion of the following work will facilitate the integration of future AF
based intelligent navigation systems on the FTPP and make the execution of such systems
more efficient:

1.  As outlined in Section 3.0, the integration of any new application (e.g. Real
Time Controller) into the AF-FTPP system involves multiple development
systems. This has been a deficiency particularly in terms of designer
productivity because of the differences in development system operating
systems commands and because of the additional steps required to transfer
files and to execute command files. It is extremely desirable to develop a
single workstation environment for generating AF-FTPP based load modules.

2. The limitations of the FTPP memory management software caused several
AF-FTPP implementation and integration problems. In addition to the
memory management problems detailed in Section 4.7 incurred while
stressing the AF-FTPP system with a 57 task suite, stack space allocations by
the Activation Framework during initial integration phase generated task stack
overflows. This was remedied by allocating the variables in question in a
scratch global memory area. This solution should only be a temporary means
to deal with this problem since subsequent versions of the AF would cause
significant AF-FTPP integration issues. The dcvelopment of a more efficient
memory management system is essential if more complex intelligent
navigation systems are to be executed on the FTPP in real-time.

3.  The implementation of the remote data insertion and capture system needs to
be completed. In addition, the current design must be enhanced to permit
simultaneous insertion and capture of multiple messages.

4. Aninvestigation of methods by whicl_) general events can drive the AF-FTPP

- scheduler should be performed. Such event driven capabilities are necessary
if all AF concepts are to be supported.
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Thé AF-FTPP Interface needs to be enhanced to enable the use of Generalized
Objects. Since the preliminary version of the AF only utilizes boolean and
integer data, this Interface currently only supports the transmission and
reception of a 16-bit data word.

The AF-FTPP Interface must be modified to incorporate a time facility. If
such a facility were developed, the AF deadline.and time tagging capabilities
could be used.

The applications addressed until now have been devoid of real computations.
Real applications, of course, will require AFOs to perform computations of
real variables which will be communicated to other AFOs. Incorporation of
procedures into the AFOs has yet to be addressed.
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A. Appendix A - Software Sbeciﬁcations

Appendix A presents the Software Specifications for the AF-FTPP Interface.

A.1 AF-FTPP Interface File: AFO_to_VID.c

A.l.1

Process Name: Init_ AFO_to_VID

Inputs: None

Outputs’: AFOQO_to_VID Table

Referel.me: KRAPP Final Report, Section 2.7
Notes: None -'
Description:

This process initializes the AFO_to_VID table. The AFO_to_VID table is used by the AF-
FTPP Interface to determine which AFOs are local to the VID. This table is structured as
an array. The index into the the array is the AFO Identifier, and the value of the table entry
is the corresponding AFO's location (VID number). If an AFO does not exist, the
associated table entry is assigned to (-1).

The Init_AFO_to_VID process is created by the Automatic Load Module Generator.
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A.1.2 ‘
Process Name: Determine_SID_from_AFO

In puts: AFO Identifier

Outputs: Service Identifier

Reference: KRAPP Final Report, Section 2.2.2
Notes: None

Description:

This function returns the AFO Service ID (SID) to the calling function if the AFQ is local to
the VID. If the AFO is remote, then a value of (-1) is returned. This process is invoked
when creating an AFO structure (to initialize the one of the SID fields of the Frame_Node
database) and when sending a message (to determine whether the destination AFO is local
or remote). ) ' ' :

gr:c:ss Name: Determine_VID_from_AFO

Inputs: AFO Identifier

Outputs: Virtual Group Identifier

Reference: KRAPP Final Report, Section 2.2.2 °
Notes: . None

Description:

This function returns the VID on which the specified AFO resides. It is invoked when
initializing the one of the VID fields of the Frame_Node database. Additionally, it is called
by the Return_Port_to_VID procedure to determine the location of a remote AFO port.
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A.2 AF-FTPP Interface Filez App_Sex.h

gx:(i;elss Name: Application Services that Exist
Inputs: None

Outputs: None

Reference: KRAPP Final Report, Section 2.7
Notes: None

Description:

This process identifies the application services (AFOs) that"éxist It is created by the
Automatic Load Module Generator and is used to allocate and schedule the AFOs.

A.3 AF-FTPP Interface File: Conv_Msg.c

A.3.1

Process Name: Serialize_Message

Inputs: Activation Framework Message
Destination VID

Outputs: FTPP Message

Reference: KRAPP Final Report, Section 2.2.2

Notes: .~ .7 None

Description:

This process converts an Activation Framework message into an FTPP message. This
translation is required to permit inter- VID message communication. The Serialize_Message
procedure accepts an AF message as an input parameter, parses it, converts it to the FTPP
format, and sends the resultant FTPP message to the destination VID.
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A.3.2

Process Name: V Deserialize_Message

Inputs: FTPP Message

Outputs: Activation Framework Message
Reference: KRAPP Final Report, Section 2.2.3
Notes: None

Description:

This process converts an FTPP message into an Activation Framework message. The
Deserialize_Message procedure accepts a message in the FTPP format, allocates memory
for the new AF message, and reformats the FTPP data to ‘obtain the appropriate AF
structure. Subsequently, the resultant AF message is delivered to its destination port.

A.3.3

Process Name: External_Input

Inputs: FTPP Message

Outputs: FTPP Message

Reference: KRAPP Final Report, Sections 2.2.1 and 2.2.3
Notes: None

Description:

This process is responsible for retrieving a message received from a remote VID and
delivering it to the appropriate destination AFO port. Initially, the External_Input
procedure queries the FTPP input queue to determine whether or not a pending message
exists. If one or more messages have been received by the VID, then the first one is
removed and an AF message is created using the Deserialize_Message process (Process
Description. A.3.2). This AF message is then sent to its destination port using the
Activation Framework procedure AF_Deliver. After the message has been stored in the
appropriate AFO port or if no messages are pending in the queue, the External_Input
process returns to the calling procedure.
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A.3.4

Process Name: | Send_Remote

Inputs: | Activation Framework Message
Destination VID

Outputs: FTPP Message

Reference: KRAPP Final Report, Section 2.2.2

Notes: None

Description:

This process is responsible for sending an AF message to the appropriate remote VID. The
Send_Remote procedure accepts an AF message as an input parameter, converts it to an
FTPP message by invoking the Serialize_Message procedure (Process Description A.3.1),
and sends the FTPP message to the specified destination VID using the FTPP primitive
snd_msg. -

A.3.5

Process Name: AF_Exec

Inputs: FTPP Message

Outputs: None

Reference: KRAPP Final Report, Sections 2.2.1'and 2.2.3
Notes: ’ None

Description:

This process controls the retrieval of all messages received from remote VIDs. Each
iteration of the AF-FTPP scheduling loop, all pending messages are removed from the
FTPP input queue and delivered to their destination AFO ports. This removal and delivery
procedure is performed by repeatedly invoking the External_Input process (Process
Description A.3.3). — :
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A.4 AF-FTPP Interface File: Lv2_Init.c

A4.1

Process Name: Lv2s_Init

Inputs: Activation Framework Object Transfer Function Names
Outputs: None

Reference: KRAPP Final Report, Section 2.7

Notes: None

Description:

This process initializes the Versatile Real-Time Executive (VRTX) tasks that are employed
by the AF-FTPP methodology to schedule and execute the AFO transfer functions. Similar
to the application services file (App_Sex.h - Process Descripdon A.2.1), it is created by the
Automatic Load Module Generator.

A.5 AF-FTPP Interface File: Malloc.c

A.S.1

Process Name: Heapinit

Inputs: End_of_Program_Address
Beginning_of_Task_Space_Address

Outputs: None

Reference: ' KRAPP Final Report, Section 2.3

Notes: "~ 7 None

Description:

The Heapinit process initializes the bounds of the heap. The lower bound of the heap is the
end of the memory used by the AF-FTPP load modules. The upper limit is the beginning
of the memory utilized for the VRTX task stacks and control blocks.

This process also initializes the "taken" and "free" lists that are employed for dynamic
memory management (see Process Descriptions A.5.3 and A.5.4).
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A.5.2

Process Name: SBRK

Inputs: Desired_Number_of_Bytes
Outputs: Address_of_Allocated_Memory
Reference: KRAPP Final Report, Section 27_3
Notes: None

Description:

The SBRK process returns a pointer to an unreserved section of the heap that is equal to the
desired number of bytes. '

A.5.3

Process Name: Malloc

In puts: ‘ Desired_Number_of_Bytes
Outputs: Address_of_Allocated_Memory
Reference: KRAPP Final Report, Section 2.3
Notes: None

Description:

The Malloc procedure returns a pointer to an unused section of memory that is greater than
or equal to the desired number of bytes. This process initially scans the "free list" (memory
that has been previously deallocated) for a contiguous block of memory capable of storing
the required number of bytes. If none of the deallocated blocks is of sufficient size, then
the SBRK procedure is invoked to allocate the necessary memory from the heap. After a
section of memory is allocated (from either the heap or the "free” list), the size and address
of this space is added to "taken" list to permit its subsequent deallocation. Additiocally, a
pointer to this section of memory is returned to the calling process.
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A.5.4

Process Name: '

Inputs:
Outputs:
Reference:
Notes:

Description:

Free
Pointer_to_Memory_to_be_Deallocated
None

KRAPP Final Report, Section 2.3

None

This prdt:ess deallocates a section of contiguous memory. Specifically, the block of
memory identified by the specified pointer (input parameter) is removed from the "taken”
list and inserted into the "free” list to allow its subsequent reallocation.

112



A.6 AF-FTPP Interface File: Schd.c

A.6.1

Process Name: AF_Swap

Inputs: None

Outputs: ~ None

Reference: KRAPP Final Report, Section 2.2.1
Notes: None

Description:

This process suspends the calling AFO. It is used to return control to the AF-FTPP
scheduler after an AFO transfer function has completed its execution.

A.6.2

Process Name: AFO_to_Exec

Inputs: AFO Service Identifier

Outputs: None

Reference: KRAPP Final Report, Section 2.2.1
Notes: None |
Description:

The AFO_to_Exec procedure is used to update the Frame_Node database to identify the
next AFO that should be executed.
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A.6.3

Process Name: Sched

Inputs: Exec_AFO_SID

Outputs: None

Reference: KRAPP Final Report, Section 2,_2.1
Notes: None

Description:

The Sched process performs the initialization of the Activation Framework and executes the
AF-FTPP scheduling loop. The primary functions of this procéss are outlined below:

1.

2.

SRS NV I N

Invokes the Init_AFO_to_VID process to initialize the AFO_to_VID table

(Process Description A.1.1). :

Calls the AF_Go procedure to create the Activation Framework Frame Node

database and AFOs.

Executes the Lv2_Init process to initialize the VRTX tasks (Process Description

A4.1).

Creates a VRTX task for each existing system service and AFO.

Invokes the Send_Initial _Message procedure to prime the external AFOs.

Calls the AF process tsk_loop to determine the first AFO to execute.

Begins the Main Scheduling loop

a. Executes the AF_Exec task to determine if any input messages have been
received from remote VIDs.

b. Schedules the next AFO to be executed.

¢. Calls the tsk_loop procedure to locate the pnmed AFOQO with the highest
importance.

d. If the application has completed, the loop is exited. Otherwise, it repeats (a)
through (d).

A detailed discussion of the Sched process is presented in Section 2.2.1.
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A.7 AF-FTPP Interface File: Sex.c

A.7.1

Process Name: Init_Sex_Table

Inputs: Service Exists Flags

Outputs: Service Exists Table

Reference: KRAPP Final Report, Section 2.2.1
Notes: None

Description:

This process initializes the Service Exists Table. This table identifies the application and
operating system services that will be executing in the load module. This table is used to
determine the number of Versatile Real-Time Executive (VRTX) tasks niecessary to execute
the application AFOs and System tasks. Further, this table is used to associate the VRTX
tasks with their corresponding function (for example, an AFO transfer function).

A.7.2

Process Name: Init_Schd_Table

Inputs: Service Exists Flags

Outputs: Scheduling Table

Reference: KRAPP Final Report, Section 2.2.1 .l
Notes: . None

Description:

This process initializes the scheduling class field of each existing system service and AFO.
The two types of scheduling classes are periodic and on_message_reception.
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A.8 AF-FTPP Ivnterfacé File: Utls.c

A.8.1
Process Name: Test_Done?
Inputs: AFO Completion Count
Maximum Number of Iterations Count
Outputs: Test Done Flag
Reference: KRAPP Final Report, Section 2.2.1
Notes: None
Description:

The Test_Done? process returns a TRUE or FALSE value to the calling process indicating
whether or not the application has completed its execution. )

A.8.2

Process Name: Print_System_Output

Inputs: AFO Identifier

Outputs: AFOs_Received Table
Reference: KRAPP Final Report, Section 2.4
Notes: None

Description:

The Pn'nt_Systcm_Oﬁtprt procedure is called by the System_Qutput AFO, and it notes that
a message has been received by the specified AFO. The process records the AFO's identity
in the AFOs_Received table.
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A.8.3

Process Name: ) Record_AFO_Exec

Inputs: AFO Identifier

Outputs: AFO_Has_Executed Table

Reference: KRAPP Final Report, Sections 2.2.4 and 4.7
Notes: None

Descrip_tion:

The Record_AFO_Exec process is invoked by the AF-FTPP scheduler to indicate that an
AFO has been executed. The identity of this AFO is recorded in the AFO_Has_Executed
table.

A.8.4

Process Name: Init_SID

Inputs: AFO Identifier

Outputs: AFO Service Identifier

Reference: KRAPP Final Report, Section 2.2.1
Notes: None

Description:

The Init_SID process provides the Service ID of the specified AFO. If the AFO does not
reside on the VID, this process returns a (-1) to the calling procedure.
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A.8.35

Process Name: Init_VID

Inputs: AFO Identifier

Outputs: Virtual Group Identifier
Reference: KRAPP Final Report, Section 2.2.1
Notes: None

Description:

The Init_'V'ID process returns the VID on which the specified AFO resides.

A.8.7
Process Name: Assign_Port_to_AFO
Inputs: AFO Identifier
Port Identifier
Outputs: Port_to_AFO Table
Reference: KRAPP Final Report, Section 2.2.1
Notes: None
Description:

The Assign_Port_to_AFO updates the Port_to_AFO table to inform the AF-FTPP
Interface of the AFO to Port mappings. The Port_to_AFO table is queried by the
AF _Deliver and Send_Remote procedures when determining the location (VID) of a port.
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A.8.8

Process Name:

In putsf
Outputs:
Reference:
Notes:

Description:

Rcmm_Pon_tb;_AFO

Port Identifier

AFO Identifier

KRAPP Final Report, Section 222

None

If the spécified AFO port is local, this process returns the AFO associated with the port.
Conversely, if the AFO is remote, then a value of (-1) is returned to the calling function.

A.8.9
Process Name:

Inputs:
Outputs:
Reference:
Notes:

Description:

Return_Port_to_VID

Port Identifier

Virtual Group Identifier

KRAPP Final Report, Section 2.2.2

None

The Return_Port_to_VID process returns the VID on which the specified port resides.
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A.8.10 .
Process Name: Init_Time_Counters

Inputs: ‘ None

Outputs: Data Structures Used for the Interval Timing
Reference: KRAPP Final Report, Section 2.2.4
Notes: None

Description:

This process initializes the data structures that are used by the Start_Timing and
Stop_Timing procedures. h

A.8.11

Process Name: Start_Timing

Inputs: Interval Identifier

Outputs: Timing Armray Entry

Reference: KRAPP Final Report, Section 2.2.4
Notes: None

Description:

The Start_Timing procedure records value of the local processor clock. This process is
invoked to mark the beginning of an interval that is being timed.
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A.8.12

Process Name:

Inputs:
Outputs:
Reference:
Notes:

Description:

Stop_Timing

Interval Identifier

Timing Array Entry

KRAPP Final Report, Section 2,2.4

None

The Stop_Timing process is used to mark the end of an interval that is being measured.
This procedure reads the current time, determines the elapsed time by subtracting the
corresponding start time, adjusts this difference to make the timing facility non-intrusive,
and records this "adjusted” interval time for subsequent retrieval.
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B. Appendix B - Mddiﬁcation.of the Activation Framework -

Appendix B discusses the modifications that were made to the Activation Framework to
allow its execution on the FTPP.

1. An Interface package written in Ada was incorporated into the AF source code.
It was required to permit the invocation of the FTPP C code by the Ada AF
procedures.

2. The List Management System was augmented:

a. The exceptions were removed because the AF-FTPP system does not
support them. They were replaced with a corresponding set of error
definitions.

b. The Ada dynamic memory allocation schcmc was replaced with the C
malloc and free procedures. This modification was performed, because
the Ada allocation and deallocation procesé is not supported by the AF-
FTPP system.

c. Certain data structures were redefined.

i. The constant max_size was decreased from 1024 to 400 to reduce the
memory required by the node structure. N

ii. Subtypes were removed because the Ada compiler used by CSDL has
problems with this structure.

iii. The Free_Node and Free_Head procedures were created to allow
dynamic deallocation of list elements.

3. The AF package was aitered.
a. .The want_except constant was initialized to false.

b. The pt_len and ptb_len variables were defined as constants. These
changes were performed to permit (d).
c. Subtypes were removed because the Ada compiler used by CSDL has

problems with this structure.
d. The size attributes for the Frame_Node record structures were explicitly
inidalized to ease debugging.
_e. The structure go_struct was changed from a variant record structure to a
basic record structure. This was performed to facilitate the serialization
and deserialization of the AF messages.
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The type of the msg_dead and msg_sent fields of the msg_struct record -
were changed from time to integer. They were altered to simplify the AF-
FTPP Interface (currently these fields are not being used by the AF).

The order of the msg_struct record was changed to make the go_struct the
last field in the record rather than an intermediate field. This 'was
performed to simplify the Interface by eliminating problems associated
with the byte padding of records (a concern when considering the
serialization and deserialization of messages).

The af _struct record was modified to include two additional integer fields,
remote_VID and local_SID which are required for scheduling the AFOs
and transmitting messages.

The WPI af swinit and af_swap procedures were removed because they
were no longer necessary.

The AF_GLOB package was created and incorpor;itcd into the AF source code.
It is a temporary scratch pad area that is required because of FTPP memory
limitations. -

The AF_FRAME package was removed for it was not required. N

The AF_ERR package was modified to remove the raise exception statements
and to add code that will alternatively print a set of the corresponding integer
idendfiers.

The PORT_NUM package was augmented.

a.

The local stack variables that were moved to the scratch pad area were
removed. ’

The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures.

The call to the pad procedure was extraneous and it was removed.

A C string_compare procedure was employed rather than the Ada "="
functon. This was done because some difficulty with Ada call was
encountered during integration.
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8. PORT_CR package
a. The local stack variables that were moved to the scratch pad area were
removed.
b. The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures.
c. The call to the pad procedure was removed, because it was extraneous.

9. The ADD2ADDR package was removed, because it was not necessary.

10. The RET_AFO package

a. The local stack variables that were moved to the scratch pad area were
removed. N

b. The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures.

c. The call to the WPI af_swap procedure was réplaced with an invocation of
AF-FTPP Interface af_swap procedure.

d. The logic involving the assignment of the AFO primed field was changed.
Rather than always setting the field to false, the AFO priming function
was invoked and this field was assigned to the value of the boolean that
was returned.

11. The AFO_INIT package

a. The local stack variables that were moved to the scratch pad area were
removed.

b. The source code that addressed the aforementioned local stack variables
‘was changed to reference the scratch pad structures.

c. The creation of the standard /O port was not required and consequently, it
was removed.

d. The call to the tsk_init procedure was removed, because it was not
necessary.

e. Calls to the AF-FTPP functions /nit_VID and Init_SID were added to
initialize the associated fields of the AF Frame_Node database.
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12.

13.

14.

15.

16.

The AF_DELIVER package was altered.

a. The local stack variables that were moved to the scratch pad area were
removed.

b. The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures. '

c. A call to the AFO priming function was added to support a message
driven scheduler. :

The SND_OBJ package

a. The local stack variables that were moved to the scratch pad area were
removed.

b. The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures.

c. A calltothe Reurn_Port_to_AFO function was added to determine if the
destination AFO was local or remote. B BN

d. If remote, the Return_Port_to_VID function was invoked to locate the
destination VID and subsequently the Send_Remote_VID procedure was
called.

The GET_OBJ package was augmented.

a. The local stack variables that were moved to the scratch pad area were
removed.

b. The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures.

The FR_INIT package was modified to dynamically allocate a frame pointer.

The MSG_CHK package

a. The local stack variables that were moved to the scratch pad area were
removed.

b. The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures.
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17. The TSK_LOOP package

a.

The local stack variables that were moved to the scratch pad area were
removed.

The source code that addressed the aforementioned local stack variables
was changed to reference the scratch pad structures.

The main loop was removed. It was no longer necessary, because the
corresponding loop control flow was moved into AF-FTPP scheduler.
The references to the frm_ptr frm_cafo field were removed, because they
were not required.

The invocation of the WPI af_swap procedure was replaced with a call to
FTPP interface afo_to_execute procedure. This change was required to
inform the AF-FTPP interface of the next AFO to execute.

The call to the tsk_init procedure was extraneous and therefore removed.
The invocation of the AFO priming function was removed in order to
change the polling scheduler to a message driven scheduler. ..

Invocations to the Init_SID procedure were included in the scheduling
process to determine if the AFOs were local before searching LMS
(performance improvement).
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C. Appendix C - Pet;formance Metrics

C.1 Description of the Intervals Measured

Appendix C - Section 1 describes the procedures whose execution times were measured.

1 free a procedure that releases a specified number of bytes and
places this unreserved memory in a "free” list. This
unreserved memory can be given to another process that
requests the same number of bytes or less.

2,3 malloc a procedure that requests the allocation of a specified number
of bytes of unreserved memory. This memory is allocated
from either the heap or the "free” list.

4 lIcreat an LMS procedure that allocates a "header” node for a linked
list and returns a pointer to the node. -

5 Idel an LMS procedure that deletes a specified node from a list. *

6 lwrite an LMS procedure that allocates a node element, initializes
its data object, and adds it to a specified list.

7 lread an LMS procedure that returns the data object of a specified
node. B

8 lrewrite an LMS procedure that replaces the data object of a specified
node with a specified data object.

9 execute a procedure that invokes the prinﬁng function corresponding
to a specified AFO.

10 pad. a procedure that pads a specified character string with a
specified number of spaces.
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11

12

13

14

15

16

filter

tsk_loop

ret_afo

afo_init

port_num

port_cr

17, 35 af_deliver

18

19

20

21

snd_obj

get_obj

fr_init

msg_chk

a procedure that returns the AFO and port names from a =
character string of the form "AFO/port”.

a procedure that returns the primed AFO with the highest
importance. :

a procedure that is invoked when an AFO completes its
execution. This procedure determines if the AFO is still
primed and suspends to the FTPP scheduler.

a procedure that initializes an AFO structure.

a procedure that searches the- port table for a specified
character string and returns its integer port identifier.

a procedure that initializes a port structure and inserts a
corresponding entry into the port table:

a procedure that delivers a specified message to the correct
port. This procedure also invokes the appropriate priming
function to support a message driven scheduler.

a procedure that sends a specified message to a specified
port. ~ If the destination AFO is local, the AF_Deliver
procedure is invoked. If the destination AFO is remote, the
message is serialized and sent using the FTPP snd_msg
primitive. '

a procedure that removes a message from a specified port. -

a procedure that initializes a frame.

a procedure that checks a specified port for the presence of a
message.
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22

23

24

25

26

27

28

29

30

31

32

init_afo_ta_vid

af_go

init_test_done_flags

Iv2s_init

send_initial_msg

af_exec

exec_afo

send_remote

serialize_msg

snd_msg

a procedure that initializes the AFO_to_\}ID table which -

depicts the AFO to VID mapping.

a procedure that controls the initialization of the AF and
AFOs.

a procedure that initializes a set of flags that indicate when
the execution of the AFOs is complete.

a procedure that associates each VRTX task with the
procedure that should be executed when the task is resumed.

a procedure that primes the "External Input" Event Diagnosis
AFOQs by sending a set of messages.

a task that queries the FTPP input queue to determine if a
message has been received from a remote AFO. If one or
more messages are present, they are deserialized into AF
messages and sent to the appropriate AFO ports using the
AF_Deliver procedure.

a task that requests the time from the NE (removed from the
AF-FTPP system).

the execution of the primed AFO with the highest
importance.

a procedure that invokes the message serialization procedure
and sends the specified message to a remote VID. using the

FTPP snd_msg primitive.

a procedure that serializes a message in preparation for its
transmission to a remote VID.

the FTPP primitive for sending a message.
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33

34

36

37

38

39

sync_self
external_input

deserialize_msg

service creation
Total time

AF inidalization

AF execution

a procedure that sends a message to itself. Itis used to
"scoop" all messages to this VID from the Network Element.

a procedure that removes messages from the FTPP input
queue using the FTPP get_msg primitive. '

a procedure that converts FTPP messages to AF messages.

a procedure that initializes the VRTX services which exist on
the VID.

the length of time required to initialize the AF and AFOs and
to execute the application. ’

the length of time required to initialize the AF and AFOs.
This time will, in general, remain reladvely constant for all
distribution strategies, because the process is performed on
each VID.

the length of time from the completion of the
send_initial_msg procedure (the end of initialization) to the
completion of the application. This time varies based on the
number of VIDs involved and AFO to VID mapping.
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C.2 Performance Measurements Using the Network Element Simulator

Appendix C - Section 2 presents the preliminary performance measurements. These
execution times were recorded when the Event Diagnosis Expert was executed on one,
two, and three VIDs in conjunction with the Network Element (NE) Simulator. These
times were used, and should only be used, to determine where the bulk of the execution
time resides and to evaluate the performance gains attained by incorporating enhancements
(illustrated in Figure C.1). The performance measurements of the "baseline” AF are
presented in Section C.2.1. The times for the "enhanced” AF are outlined in Section
C.2.2. The primary points of interest, with regard to a comparison of the performance of
the versions of the AF, are printed in bold type.
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F] Enhanced AF

2

Number of Processors

Figure C.1 - Performance of the AF Versions
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C.2.1

NUMBER OF VIDS: 1

Total time required for execution (without SIM or Time task) = 5969 ms.

134

Performance Measurements Before Enhancements

Position Procedure Num, of Calls  Time/Call
(ms.)

1 free 33 0
2 malloc - total time 142 0.7
3 malloc - free list search 142 0.2
4 Icreat 42 0.8
5 ldel 33 0
6 lwrite 99 1.5
7 lread 9605 0.5
8 - Irewrite 400 0.3
9 execute 246 177
10 pad 15 11
11 filter (not called) - C -
12 tsk_loop 20 222
13 ret_afo (incorrect timing) - T
14 afo_init 14 5.7
15 port_num 541 8
16 port_cr 26 12 -
17 af_deliver 33 5.8
18 snd_obj 33 6.3
19 get_obj 33 3.3
20 fr_init 1 14
21 msg_chk (incorrect timing) - -
22 init_afo_to_vid 1 0
23 af_go 1 359
24 init_test_done_flags 1 0
25 lv2s_init 1 0
26 send_initial_msg 1 93
27 af_exec 20 24
28 tme 2 54.4
29 exec_afo 20 46.4
30 send_remote - -
31 serialize_msg - -
32 snd_msg - -
33 sync_self-(with SIM) 20 16.8
34 external_input - -
35 af_deliver (from ext_input) - -
36 deserialize_msg - -
37 service creation | 48
38 time - initial to completion 1 7383

Total Time -

96
32
32

144

112
4365
16

4437

80
4307
311
192



NUMBER OF VIDS: 2

Position Procedure Num. of Calls  Time/Call
(ms.)

1 free 17 0
2 malloc - total time 138 0.2
3 malloc - free list search 138 0
4 Icreat 42 0
5 Idel 17 1.9
6 lwrite 83 1.2
7 Iread 7461 0.4
8 lrewrite 284 0.5
9 execute 200 17.4
10 pad 15 1.1
11 - filter (not called) - -
12 tsk_loop 15 - 237
13 ret_afo (incorrect timing) - -
14 afo_init 14 34
15 port_num 400 7.8
16 port_cr 26 © 132
17 af_deliver 17 3.8
18 snd_obj 9 7.1
19 get_obj 17 6.4
20 fr_init 1 14
21 msg_chk (incorrect timing) - -
22 - init_afo_to_vid 1 0
23 af_go 1 359
24 init_test_done_flags 1 0
25 Iv2s_init 1 0
26 send_initial_msg 1 80
27 af_exec 15 38
28 time 15 53
29 exec_afo 13 29
30 send_remote 4 4
31 serialize_msg 4 0
32 snd_msg 4 4
33 sync_self 15 26.7
34 external _input (incorrect timing) - -
35 af_deliver (from ext_input) 12 4
36 deserialize_msg . 12 1.3
37 service creation 1 32
38 time - initial to completion 1 5740

Total time required for execution (without SIM or Time task) = 4548 ms.
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NUMBER OF VIDS: 3
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Total time required for execution (without SIM or Time task) = 3537 ms.
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free

malloc - total time
malloc - free list search
Icreat

Idel

lwrite

Iread

lrewrite

execute

pad

filter (not called)
tsk_loop

ret_afo (incorrect timing)
afo_init

port_num

port_cr

af_deliver

snd_obj

get_obj

fr_init

msg_chk (incorrect timing)
init_afo_to_vid
af_go
init_test_done_flags
lv2s_init
send_initial_msg
af_exec

time

exec_afo
send_remote
serialize_msg
snd_msg

sync_self

external _input (incorrect timing)

af_deliver (from ext_input)
deserialize_msg

~ service creation

time - initial to completion
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C.2.2 Performance Measurements After Enhancements

NUMBER OF VIDS: 1

E
E

Num, of Calls  Time/Call Total Time
(ms.)

(ms.)
1 free 33 0 0
2 malloc - total time 142 0.6 80
3 malloc - free list search 142 0 0
4 Icreat 42 0 0
5 Idel 33 0.5 16
6 lwrite 99 1.5 144
7 Iread 2162 0.5 1040
8 Irewrite 180 0.5 96
9 execute 46 6 275
10 pad 15 1.1 16
11 filter (not called) - - -
12 tsk_loop 20 11.4 229
13 ret_afo 20 5.6 112
14 afo_init 14 2.3 32
15 port_num 59 8.5 499
16 port_cr 26 13.2 343
17 af_deliver 33 12.5 414
18 snd_obj 33 15.7 519
19 get_obj 33 5.2 172
20 fr_init 1 14 14
21 msg_chk 83 2.5 208
22 init_afo_to_vid 1 0 0
23 af_go 1 751 751
24 init_test_done_flags 1 0 : 0
25 lv2s_init 1 0 0
26 send_initial_msg 1 122 122
27 af_exec 20 30.4 608
28 time (removed) - oy -
29 exec_afo 20 49 980
30 send_remote - - -
31 serialize_msg - - -
32 snd_msg - - -
33 sync_self (with SIM) 20 18.4 368
34 external _input 20 0 0
35 af_deliver (from ext_input) - - -
36 deserialize_msg - - -
37 service creation 1 32 32
38 time - initial to completion 1 2670 2670
39 AF initialization (static) 1 903 903
40 AF execution (dynamic) 1 1768 1768

Total time required for execution (without SIM or Time task) = 2312 ms.
258% increase in performance.
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NUMBER OF VIDS: 2

E
E

\T-N- IS Fo Q¥ WIS Y

Total time required for execution (without SIM or Time task) = 1551 ms.

Num. of Calls
free 17
malloc - total time 138
malloc - free list search 138
lcreat 42
Idel 17
Iwrite 83
Iread 1772
Irewrite 92
execute 27
pad 15
filter (not called) -
tsk_loop 17
ret_afo 13
afo_init 14
port_num 59
port_cr 26
af_deliver 17
snd_obj 9
get_obj 17
fr_init 1
msg_chk 37
init_afo_to_vid 1
af_go 1
init_test_done_flags 1
lv2s_init 1
send_initial_msg 1
af_exec 17
time {removed) -
exec_afo 13
send_remote 4
serialize_msg 4
snd_msg 4
sync_self (with SIM) 17
external _input 29
af_deliver (from ext_input) 12
deserialize_msg 12
service creation 1

time - initial to completion 1

AF initialization (static)
AF execution (dynamic)

293% increase in performance.
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NUMBER OF VIDS: 3

Position =~ Procedure

V-N- - e WV IF R VAR SN o

Total time réquired for execution (without SIM or Time task) = 1695 ms.

free

malloc - total time
malloc - free list search
Icreat

Idel

lwrite

Iread

Irewrite
execute

pad

filter (not called)
tsk_loop
ret_afo

afo_init
port_num
port_cr
af_deliver
snd_obj

get_obj

fr_init

msg_chk
init_afo_to_vid
af_go
init_test_done_flags
lv2s_init
send_initial_msg
af_exec

time (removed)
exec_afo
send_remote
serialize_msg
snd_msg
sync_self (with SIM)
external_input

af_deliver (from ext_input)

deserialize_msg
service creation

time - initial to completion

AF initialization (static)
AF execution (dynamic)

209% increase in performance.
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